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The core of this thesis is about inferring from inconsistent knowledge bases.

To that purpose we first present and study a probabilistic consequence relation,
η.ζ . The idea behind this consequence relation responds to the situation where

the set of premises (or knowledge base) consists of the beliefs of a single rational

agent. A sentence in the knowledge base can then be assigned a degree of belief,

corresponding to the degree to which our agent believes the sentence to be true

(which we identify with subjective probability). What we could do next is to fix

a lower bound probability threshold for each sentence in the knowledge base, say

η. It might then be argued that we should be willing to accept as a consequence

of it any other sentence which as a result has, by probability logic, probability at

least some suitable threshold ζ.

Initially we identify our knowledge base with a finite set of propositions (in

classical propositional logic). Later we extend results by considering infinite

knowledge bases and the possibility of distinct probability thresholds for each

sentence in our knowledge base.

We also present the consequence relation η Iζ , of the same nature as η.ζ , with

the difference that η and ζ are now truth-functional thresholds (within the frame

of  Lukasiewicz and Gödel logics).
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Chapter 1

Introduction

It is with great frequency that we come across information which is, when

formalized in a classical language, inconsistent.1 In the presence of inconsistency

classical entailment explodes.

A good example of inconsistent information is our set of beliefs. It is bound

to be inconsistent. Moreover in most cases it may be so because we are not aware

of such inconsistencies -maybe, if we were, we would revise our beliefs. In some

cases though that does not seem to be reason why we hold them and the Sorites

paradox is a good example of what we mean.

The Sorites paradox goes as follows:

Suppose we have a certain number of objects, say n (if we assume

that n is a large number we will reasonably believe that we have a pile

of objects). Next we start removing objects, one at a time. We may

believe that removing one object cannot make a difference as to turn

a pile into a non-pile. Eventually though, by removing objects one at

a time, we will come down to just one object, which is not a pile.

Let us formalize this paradox with classical propositional logic. Let

pi stand for the proposition ’i objects are a pile’, for all i ∈ {1, ..., n}.
The following set of sentences gives form to the paradox:

Γn = {pn, pn → pn−1, ..., p2 → p1,¬p1}.

The paradox rests upon the fact that it seems reasonable to believe

1Unless otherwise stated we will understand inconsistency in a classical way. That is, with
respect to a classical language and classical semantics and entailment.

8



CHAPTER 1. INTRODUCTION 9

each sentence in Γn even though Γn is inconsistent.

This paradox, which originates due to the ambiguity of our natural language

(due to the vagueness in meaning of the word ’pile’) seems to indicate that we

can reasonably hold beliefs that as a whole happen to be inconsistent.

Although of slightly different nature, the next example (known as Kyburg’s

lottery paradox, see [28]) dwells on the same idea.

It goes as follows:

Suppose we have a lottery with n tickets. One of them will be declared

the winner. If n is a large number it seems reasonable to believe that

Ticket i will not win the lottery, for i ∈ {1, ..., n} -notice that the

probability of Ticket i not winning, provided the lottery is fair, is n−1
n

which, for n large, is very close to 1. On the other hand, it is clear

that one ticket will be the winner.

Let us proceed as in the previous example and formalize the paradox

with propositional logic. Let ti stand for the proposition ’Ticket i will

win the lottery’, for i ∈ {1, ..., n}. We will have the following set of

sentences:

Γn = {¬t1, ...,¬tn, t1 ∨ ... ∨ tn}.

The set Γn is inconsistent. However, as in the previous example, it

seems reasonable to believe each sentence in it.

The idea of high probability seems to be behind the formation of such beliefs

in this example.

Other examples of inconsistent information may be easily found. Databases

or legal systems may be or become easily inconsistent.

Suppose we have a legal system with the following two laws:

• Householders are allowed to vote in local elections.

• Immigrants do not have the right to vote in a local election.

But it may be the case that an immigrant be a householder and so such a

legal system is clearly inconsistent. It is true though that this inconsistency is
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pretty obvious but, nonetheless, it is not hard to imagine situations where legal

systems or databases could hold inconsistencies of this nature.

Some theories are clearly inconsistent too. The examples are numerous. We

mention just one in the empirical sciences: The Big Bang theory and Classical

Thermodynamics. When brought together and regarded as a unit we get an

inconsistent theory. It is well known that one of the consequences of the Big

Bang theory is that at some point in time the universe will start contracting.

However, according to Classical Thermodynamics, that cannot happen since the

entropy tends to increase indefinitely (see for example [14]).

But what to do in the face of such inconsistencies? Revise. The world (or,

more generally, what we commonly refer to as reality) seems to be consistent

–holding the belief that there are contradictory objects or events would certainly

be controversial– and so, in as much as such sets of beliefs, databases, or theories

are representations of some bits of this reality (and as much as we want them

to be so –see [16]), they should be consistent and so revised in order to be left

with consistent information. However, it may happen that we do not know how

to go about revising, like in the last example, or that it is not efficient or feasible

to revise. Some argue (see [48]) that revision theory is sometimes an ongoing

process and so we are most of the time reasoning in the presence of inconsistencies

and an inference relation able to account for such reasoning could be desirable.

That is even clearer when talking about our beliefs in general, not just theories.

Even though our beliefs taken as a whole may be inconsistent it is true that we

are able to argue in a reasonable way and draw sensible conclusions out of our

inconsistent beliefs (we do not explode in the presence of such inconsistencies).

An inference relation able to account as fairly as possible for our reasoning from

possibly inconsistent sets of beliefs would be desirable.2

The definition and study of some consequence relations able to model such

reasoning in some particular situations is the aim of this thesis. The approach that

we propose rests on the concept of degree of belief. We identify belief functions

with probability functions (based on an identification between coherent or rational

belief functions and probability functions made and justified by De Finetti -see

2There literature about inconsistency and the problem of dealing with inconsistent informa-
tion is abundant. Some survey articles can be found in [2] and [40]. Formal methods for dealing
with inconsistency are numerous. Some are described in [18], [38], [39], [41], [42] and [47].
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[6] or, alternatively, [19] or [46] for a better insight).

1.1 Notation and some definitions

Throughout, unless otherwise stated, we will work with a finite propositional

language L = {p1, ..., pl}. We will denote its corresponding set of sentences

by SL (finite boolean combinations of our primitive propositions in L) and its

corresponding set of atoms by AtL. By atoms we mean all the sentences of the

form

±p1 ∧ ... ∧ ±pl

where +pi and −pi stand for pi and ¬pi respectively.

Let φ ∈ SL. By the Disjunctive Normal Form Theorem (see for example [1]

or [5] for this theorem and its proof) we know that there exists a unique set of

atoms Sφ ⊆ AtL such that ` φ↔
∨
Sφ, where ` is classical entailment (here and

throughout). It is clear that Sφ = {α ∈ AtL| α ` φ}.

Definition 1 Let w : SL −→ [0, 1]. We say that w is a probability function on

L if the following two conditions hold for all θ, φ ∈ SL:

1. If ` θ then w(θ) = 1.

2. If ` ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

From these two conditions the standard properties of probability functions

follow. We cite some without proof (see [37] for a proof and more details).

Let θ, φ ∈ SL. The following properties hold:

1. w(φ ∨ θ) = w(φ) + w(θ)− w(φ ∧ θ).

2. w(¬φ) = 1− w(φ).

3. If φ ` θ then w(φ) ≤ w(θ).

4. If ` φ↔ θ then w(φ) = w(θ).

It is worth observing that a probability function w is determined uniquely by

the values it assigns to the atoms via the identities

w(φ) = w(
∨

Sφ) =
∑
α`φ

w(α)
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and can thus be regarded as a 2l-coordinate vector in D2l , where

D2l = {(x1, ..., x2l) |xi ≥ 0,
∑
i

xi = 1}.

Sentences in SL can also be identified with 2l-coordinate vectors.

Let φ ∈ SL and define the 2l-coordinate vector ~φ as follows: For each i ∈
{1, ..., 2l}, φi = 1 if αi ` φ and φi = 0 otherwise.3 A finite set of sentences, say

Γ = {φ1, ..., φk} ⊆ SL can then be identified with a matrix (which we will denote

by MΓ) whose rows are the 2l-coordinate vectors corresponding to such sentences.

Though the order that we consider for the columns and rows of MΓ does not

really matter to our purposes we will assume throughout, unless otherwise stated,

a certain ordering for them. The order of the rows will correspond to the order

of Γ (assuming Γ is an ordered set of the form specified above, {φ1, ..., φk}). The

order of the columns will match that of the atoms of L, say 6, which we define

in a quite intuitive way.

First, for α ∈ AtL, we define |α| = |{p ∈ L| α ` p}|. Now let i, j ∈ {1, ..., 2l},
i 6= j.

1. If |αi| < |αj| then αi 6 αj.

2. Assume now that |αi| = |αj|. Let us take the first propositional variable in

L (which for this purpose we will assume ordered, {p1, ..., pl}), say pr, such

that αi ` pr and αj ` ¬pr or αi ` ¬pr and αj ` pr. In the former we will

have that αi 6 αj and in the latter αj 6 αi.

That 6 is a total ordering on AtL is clear.

Notice that in MΓ we will likely have columns which are identical -which

correspond to distinct atoms in AtL logically implying exactly the same sentences

in Γ. To simplify we will sometimes consider, instead of AtL, the set of consistent

sentences of the form

±φ1 ∧ ... ∧ ±φk

which we will denote by β1, ..., βm and set B = {β1, ..., βm}. We will consider B
to be an ordered set.

3Here the superscript denotes the coordinate of a vector. In some other sections the notation
will be slightly different and coordinates will be denoted by subscripts. We also assume that
the atoms of L are ordered and the subscript i in αi refers to that ordering.
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We can define a total ordering 6 on B as we did above for AtL.

For β ∈ B, we define |β| = |{φ ∈ Γ| β ` φ}|. Now let i, j ∈ {1, ...,m}, i 6= j.

1. If |βi| < |βj| then βi 6 βj.

2. Assume now that |βi| = |βj|. Let us take the first sentence in Γ, say φr,

such that βi ` φr and βj ` ¬φr or βi ` ¬φr and βj ` φr. In the former we

will have that βi 6 βj and in the latter βj 6 βi.

By using the sentences in B each sentence φi can be identified with an m-

coordinate vector ~φi: For j ∈ {1, ...,m}, φji = 1 if βj ` φi and φji = 0 otherwise.

The matrix of Γ (denoted MΓ) will then be a k × m matrix. In some sections,

in contexts where Γ is taken to be a set of premises or knowledge base and θ

a possible consequence of Γ under some inference relation, it will be useful to

appeal to what we call the matrix for Γ and θ (denoted MΓ,θ), which is given by

the matrix of Γ just defined by adding an additional row, that corresponding to
~θ, defined as follows: For j ∈ {1, ...,m}, θj = 1 if βj ` θ and θj = 0 otherwise.

Let us consider an example:

Let L = {p, q, r},

Γ = {(p ∨ q) ∧ r, (q ∨ r) ∧ p, (r ∨ p) ∧ q} = {φ1, φ2, φ3}

and θ = p.

Clearly B = {β1, β2, β3, β4, β5}, with

β1 = φ1 ∧ φ2 ∧ φ3,

β2 = φ1 ∧ φ2 ∧ ¬φ3,

β3 = φ1 ∧ ¬φ2 ∧ φ3,

β4 = ¬φ1 ∧ φ2 ∧ φ3,

β5 = ¬φ1 ∧ ¬φ2 ∧ ¬φ3.

We will thus have the following matrix for Γ and θ:

MΓ,θ =


0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

0 1 0 1 1
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The matrix of Γ would be the corresponding submatrix of MΓ,θ:

MΓ =

 0 0 1 1 1

0 1 0 1 1

0 1 1 0 1


MΓ would have the following form:

MΓ =

 0 0 0 0 0 1 1 1

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1


We can trivially extend MΓ to the matrix MΓ,θ as we did above with

MΓ and MΓ,θ.

In some further applications we will not consider columns which con-

tain only 0’s for the sake of simplicity.



Chapter 2

Measuring inconsistency

We start by considering some inconsistency measures.

2.1 η-coherence

In [45] Schotch and Jennings talk about the idea of level of coherence of sets of

sentences and, to make the idea precise, they define what they call the coherence

function, c, which in our settings can be defined as follows:

Definition 2 Let c : P(SL) −→ N ∪ {ω} 1 and Γ ⊆ SL.

If ⊥ /∈ Γ, c(Γ) = m ⇐⇒ m is the least natural number such that

there exist sets ∆1, ...,∆m (with ∆i 0 ⊥ for all i ∈ {1, ...,m}) and⋃m
i=1 ∆i = Γ.2

If ⊥ ∈ Γ we adopt the convention c(Γ) = ω.

Although probably suitable to measure inconsistency in some contexts this

function does not seem to be able to capture certain differences in degree of

consistency that to us seem quite intuitive.

Let us consider Kyburg’s lottery paradox as presented in the introduction. Re-

call that the set of sentences considered in this example to formalize the paradox

was Γn = {¬t1, ...,¬tn, t1 ∨ ... ∨ tn} for n ∈ N.

Clearly c(Γn) = 2 –since any proper subset of Γn is consistent (for example,

set ∆1 = {¬t1, ...,¬tn} and ∆2 = {t1 ∨ ... ∨ tn}). Notice that this is so for any

1P(SL) is the power set of SL and ω is the first transfinite cardinal.
2Here and throughout ⊥ stands for classical contradiction.

15
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value of n. c(Γn) is independent of n. But this is in some way counterintuitive

and we are tempted to argue that the larger the n the less inconsistent Γn seems

to be.

Based on this approach we can give an alternative measure of consistency.

For the next two definitions let Γ ⊆ SL and η ∈ [0, 1].

Definition 3 We say that Γ is η-coherent if and only if there exists a collection

A of q copies of some consistent subsets of Γ and every sentence in Γ occurs at

least in p copies, for some p
q
≥ η.

Let us consider again the set of sentences Γn = {¬t1, ...,¬tn, t1 ∨ ... ∨ tn}
in Kyburg’s lottery paradox. Every proper subset of Γn is consistent. We can

consider a collection A consisting of a copy of each maximal consistent subset of

Γn. We will have n + 1 such subsets, each containing n sentences. Thus Γn will

be n
n+1

-coherent, which somehow reflects our intuitive idea that the larger the n

the less inconsistent Γn seems to be.

2.2 η-consistency

Next we recall the definition of η-consistency given in [25] and [26].

Let Γ = {φ1, ..., φn} ⊆ SL and η ∈ [0, 1].

Definition 4 We say that Γ is η-consistent if and only if there exists a probability

function w such that w(φ) ≥ η for all φ ∈ Γ and maximally η-consistent if and

only if Γ is η-consistent and there is no λ > η for which Γ is λ-consistent.

Normally we will use the abbreviation w(Γ) ≥ η to mean that w(φ) ≥ η for

all φ ∈ Γ and the abbreviation w(Γ) = η to mean that w(φ) ≥ η for all φ ∈ Γ

and w(φ) = η for some φ ∈ Γ.

We will denote the maximal consistency of Γ by mc(Γ).

It is important to remember that mc(Γ) is always rational and always at-

tained3 by a certain probability function (see [25] or [26] for these and other

properties of η-consistency).

3That is to say, there exists a probability function w on L such that w(Γ) = mc(Γ).
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Lemma 5 There exists a probability function w that assigns only rational values

to the atoms in AtL such that w(Γ) = mc(Γ).

Proof. Let mc(Γ) = λ.

Recall from Section 1.1 that we can identify any probability function on L

with a vector ~x in D2l and a sentence φ ∈ Γ with a vector ~φ of 0′s and 1′s of the

same dimension. Thus the statement (which we will denote by Θ)

’There exists a probability function w such that w(Γ) = λ’

can be expressed in the language of the structure 〈R,+, <,=, 0, 1, λ〉. Further-

more, Θ is true in 〈R,+, <,=, 0, 1, λ〉.
〈Q,+, <,=, 0, 1, λ〉 is an elementary substructure of 〈R,+, <,=, 0, 1, λ〉 and

thus Θ has to be true in 〈Q,+, <,=, 0, 1, λ〉 too. Therefore, there has to exist a

probability function w that assigns only rational values to the atoms of L such

that w(Γ) = mc(Γ) = λ. �

Again let B = {β1, ..., βm} be the set of sentences of the form

±φ1 ∧ ... ∧ ±φn

that are consistent.

Proposition 6 Γ is η-coherent if and only if Γ is η-consistent.

Proof. Let us assume that Γ is η-coherent. Thus there exists a collection A with

q copies of consistent subsets of Γ in which every sentence occurs at least p times,

for η ≤ p
q
.

Assume that A = {∆1, ...,∆q}. Since the subsets ∆i are consistent we can

take αki ∈ AtL such that αki ` ∆i. This way we get a collection of q copies of

atoms in AtL, {αk1 , ..., αkq}. Now let w be a probability function that assigns to

each atom α ∈ AtL probability r
q
, where r is the number of copies of α in the

collection {αk1 , ..., αkq}. Thus Γ will be η-consistent since w(φ) ≥ p
q

for all φ ∈ Γ.

In the other direction let us assume that Γ is η-consistent, η ≤ p
q

= mc(Γ). Let

us consider a set of atoms {αk1 , ..., αkr} ⊆ AtL that yields the maximal consistency

of Γ (that is, there exists a probability function w such that w(
∨r
i=1 αki) = 1 and

w(Γ) = mc(Γ) = p
q
). Assume further that w is such that w(αki) = pi

qi
for some

positive integers pi and qi, for each i ∈ {1, ..., r} (we know that such a probability
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function needs to exist by Lemma 5). Let Q be the least common multiple of the

qi and p∗i be such that pi
qi

=
p∗i
Q

(and p
q

= P
Q

). Let us set now

A = {∆1
1, ...,∆

1
p∗1
, ...,∆r

1, ...,∆
r
p∗r
},

where ∆i
j = {φ ∈ Γ |αki ` φ} for each j ∈ {1, ..., p∗i }. Notice that in such

collection there are at least P copies of each sentence. Thus Γ is coherent to

degree p
q

and therefore η-coherent. �

Corollary 7 There exists η ∈ Q∩[0, 1] for which Γ is maximally η-coherent (that

is to say, Γ is η-coherent and there is no λ > η for which Γ is λ-coherent).

We will denote the maximal coherence of Γ by MC(Γ). We will then have

that MC(Γ) = mc(Γ).



Chapter 3

The consequence relation η.ζ

In this chapter we study different aspects of the consequence relation η.ζ

which, in a more restricted form, was first presented in [34] (for η = ζ) and later

extended in [43] (for η, ζ rational).

The idea behind this consequence relation responds to the situation where

the set of premises (or knowledge base) consists of the assertions held by a single

rational agent, such as ourselves. A sentence in our knowledge base can then be

assigned a degree of belief, corresponding to the degree to which we believe the

sentence is true (which we identify with subjective probability –see [6], [19] or [46]

for a justification of this identification and a better insight into the topic). What

we could do next is to fix a lower bound probability threshold for each sentence

in our knowledge base, say η. It might then be argued that we should be willing

to accept as consequences of it any other sentences which as a result have (by

probability logic, see for example [10] or [37]) probability at least some suitable

threshold ζ. The consequence relation η.ζ responds to this idea.

The natural choice for ζ is η itself –that is, that given a probability threshold

for the premises the consequences be at least as probable as the premises (that

was the approach followed in [34]). However, in some situations, the fact that

ζ > η or η < ζ may be well justified.

3.1 η.ζ: Definition and some properties

Throughout this section let Γ = {φ1, ..., φk} ⊆ SL, θ ∈ SL and η, ζ ∈ [0, 1].

Definition 8 We say that Γ (η, ζ)-implies θ (denoted Γη .ζ θ) if and only if, for

19
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all probability functions w, if w(Γ) ≥ η then w(θ) ≥ ζ.

The next proposition gives us some information about how the relation be-

tween Γ and θ under η.ζ is preserved when varying the values η, ζ.

Proposition 9 If Γη .ζ θ then Γη
+
.ζ− θ, where ζ− ≤ ζ and η ≤ η+.

Proof. It follows directly from the definition of η.ζ . �

Next we state some properties of η.ζ regarding extreme values for η, ζ and

classical entailment.

Proposition 10 We have what follows:

(i) Γη .0 θ for all η ∈ [0, 1].

(ii) For η > mc(Γ) we have that Γη .1 θ.

(iii) For ζ > 0, Γ1 .ζ θ ⇐⇒ Γ ` θ.

(iv) For ζ > 0, Γ0 .ζ θ ⇐⇒ ` θ.

Proof. Parts (i) and (ii) follow immediately from the definition of η.ζ .

Let us prove (iii) by reductio ad absurdum. Let us assume that Γ1 .ζ θ, for

ζ > 0, and that Γ 0 θ. Thus there exists α ∈ AtL such that α ` φ for all φ ∈ Γ

and α 0 θ. Then we can define a probability function w that assigns probability

1 to this atom and null probability to the other atoms, which contradicts the fact

that Γ1 .ζ θ for ζ > 0. Conversely suppose that Γ ` θ and that w is a probability

function on L for which w(Γ) = 1 (the result follows trivially if there is no such

probability function). Thus, if w(α) > 0 then α ` φ for all φ ∈ Γ. But since

Γ ` θ we will have that α ` θ too, giving w(θ) = 1 and consequently Γ1 .ζ θ for

any ζ ∈ [0, 1]. This completes the proof of (iii).

To prove (iv) let us proceed again by reductio ad absurdum and assume that

Γ0 .ζ θ, for ζ > 0, and that 0 θ. Thus there has to exist an atom α ∈ AtL such

that α 0 θ. Then we can define a probability function w that assigns probability

1 to this atom and null probability to the other atoms. That would imply that

Γ0 7ζ θ, contradicting the assumption above. In the other direction, if ` θ then

all probability functions w are such that w(θ) = 1 and therefore Γ0 .ζ θ for any

ζ ∈ [0, 1]. This completes the proof of (iv). �

Proposition 11 Γη .η θ for all η ∈ (0, 1] if and only if there exists φ ∈ Γ such

that φ ` θ.
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Proof. Let us proceed by reductio at absurdum to prove the right implication.

Let us assume that Γη .η θ for all η ∈ (0, 1] and that for all i ∈ {1, ..., k} we have

that φi 0 θ. Then for all i ∈ {1, ..., k} we can find an atom αji ∈ {α1, ..., α2l} such

that αji ` φi and αji 0 θ. Let us take one such atom for each φi and denote by

S the set defined by them. We can define a probability function w that assigns

probability 1
|S| to every atom in S and null probability to any other atom. Clearly

w will be such that w(Γ) ≥ 1
|S| and w(θ) = 0, contradicting the assumption above.

Conversely suppose that φi ` θ for some i ∈ {1, ..., k}. Thus, w(φi) ≤ w(θ) for

any probability function w on L (see Section 1.1). Therefore, for all probability

functions w, if w(Γ) ≥ η then w(θ) ≥ η, for all η ∈ (0, 1]. �

We state now two properties of η.ζ , those corresponding to left weakening

(monotonicity) and right weakening.

Proposition 12 We have what follows:

(i) If Γη .ζ θ then Γ ∪ {ψ}η .ζ θ.

(ii) If Γη .ζ θ and θ ` ψ then Γη .ζ ψ.

Proof. The proof follows directly from the definition of η.ζ and the properties of

probability functions presented in Section 1.1. �

The next proposition gives a closure property of the pairs (η, ζ) for which

Γη .ζ θ.

Proposition 13 Let {ηn} be an increasing sequence with limit η and {ζn} a

sequence with limit ζ. If Γ ηn .ζn θ for all n ∈ N then Γη .ζ θ.

Proof. Let us proceed by reductio ad absurdum assuming that Γ η 7ζ θ. Then

there exists a probability function w such that w(Γ) ≥ η and w(θ) < ζ. But then,

for some n ∈ N, w(θ) < ζn and, since ηn ≤ η, Γ ηn 7ζn θ. This contradicts our

assumption. �

We next prove that η.ζ is language invariant.

By language invariant we mean that, given two finite propositional languages

L1 and L2 with Γ ⊆ SL1 ∩ SL2 and θ ∈ SL1 ∩ SL2, w1(θ) ≥ ζ for any probability

function w1 on L1 such that w1(Γ) ≥ η if and only if w2(θ) ≥ ζ for any probability

function w2 on L2 such that w2(Γ) ≥ η (in other words, Γη .ζ θ in the context of

the language L1 if and only if Γη .ζ θ in the context of the language L2).
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Proposition 14 The relation η.ζ is language invariant.

Proof. Suppose that Γη .ζ θ in the context of the language L. It is enough to show

that if L∗ is the language obtained from L by adding a single new propositional

variable p then Γη .ζ θ in the context of L∗ if and only if Γη .ζ θ in the context of

L.

Let us first suppose that w∗ is a probability function on L∗ such that w∗(Γ) ≥ η

but w∗(θ) < ζ. Let w be the restriction of w∗ to L. Then w will agree with w∗

on Γ and θ and so Γη 7ζ θ in the context of L too.

Conversely suppose that w is a probability function on L such that w(Γ) ≥ η

but w(θ) < ζ. Notice that the atoms of L∗ are of the form α∧±p, where +p and

−p stand for p and ¬p respectively and α is an atom of L. We can define w∗ on

L∗ as follows:

w∗(α ∧ p) = w(α),

w∗(α ∧ ¬p) = 0.

Then, for φ ∈ SL,

w(φ) =
∑
α`φ

w(α) =
∑
α`φ

w∗(α ∧ p) + w∗(α ∧ ¬p) =
∑
β`φ

w∗(β) = w∗(φ)

where the β’s range over the atoms of L∗ since, for φ ∈ SL,

α ` φ ⇐⇒ α ∧ p ` φ ⇐⇒ α ∧ ¬p ` φ.

Hence Γη 7ζ θ in the context of the language L∗. �

3.2 An equivalent of η.ζ within propositional logic

In this section we derive an equivalent to η.ζ in terms of propositional logic.

The first part of the derivation we present here follows the pattern of that in

[34] for the consequence relation η.η. It first appeared in [43] for the consequence

relation η.ζ , where η and ζ were rational values, and we reproduce it here (with

some important modifications).

We start by considering the case of η and ζ rational, say η = c
d

and ζ = e
f
,
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with c, d, e, f ∈ N. We can assume that η, ζ > 0 since, if either of these values is

0, we trivially have an equivalent propositional version by Proposition 10.

So let us assume that

θ1, ..., θn
c
d . e

f
φ (3.1)

and for the present that φ is not a tautology.

Consider B = {β1, ..., βm}.

Let ~θi be that m-vector with jth coordinate 1 if βj ` θi and 0 otherwise (i.e.

in case βj ` ¬θi) and let ~φ be the m-vector with jth coordinate 1 if βj ` φ and 0

otherwise.

Condition (3.1) is equivalent to

For all ~x ∈ Dm, if ~θi · ~x ≥
c

d
for i ∈ {1, ..., n} then ~φ · ~x ≥ e

f
(3.2)

where

Dm = {(x1, ..., xm) |xi ≥ 0,
∑
i

xi = 1}.

This follows since for any probability function w,

(w(β1), ..., w(βm)) ∈ Dm

and

w(θi) =
∑
βj`θi

w(βj) = ~θi · (w(β1), ..., w(βm)).

Let ~1 be the m-vector with 1’s at each coordinate and let

~θi = ~θi −
c

d
~1, ~φ = ~φ− e

f
~1.

Then (3.2) can be restated as

For all ~x ∈ Dm, if ~θi · ~x ≥ 0 for i ∈ {1, ..., n} then ~φ · ~x ≥ 0. (3.3)
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This is equivalent to the assertion that ~φ is in the cone in Qm given by{
n∑
i=1

ai~θi +
m∑
j=1

bj ~uj | 0 ≤ ai, bj ∈ Q

}

where ~uj is the m-vector with jth coordinate 1 and all other coordinates 0.1 In

other words, it is equivalent to (3.3) that there are some positive ai ∈ Q such

that

~φ ≥
n∑
i=1

ai~θi. (3.4)

Written in terms of a common denominator M let ai = Ni
M

where M,Ni ∈ N.

Then (3.4) becomes

M(df ~φ− de~1) ≥
n∑
i=1

Ni(df ~θi − cf~1).

Equivalently

[Md(f − e) + cf
n∑
i=1

Ni]~1 ≥Mdf(~1− ~φ) +
n∑
i=1

dfNi
~θi. (3.5)

Conversely if (3.5) holds for some natural numbers M > 0, N1, ..., Nn ≥ 0

then we can reverse this chain to get back (3.1).

Now let χ1, ..., χN ∈ {θ1, ..., θn} be such that among these χ1, ..., χN the sen-

tence θi appears exactly dfNi times for each i ∈ {1, ..., n} (so N = df
∑

iNi).

Then for βr 0 φ it follows from (3.5) that the rth coordinate of ~χj is non-zero for

at most

−deM + cf
∑
i

Ni =
cN − d2eM

d

many j (notice that because φ is not a tautology there is at least one such r).

Hence ∨
S⊆{1,...,N}
|S|> cN−d2eM

d

∧
j∈S

χj ` φ. (3.6)

Notice that, by the choice of N , cN−d
2eM
d

is an integer and indeed non-negative

1See [34] for a more detailed explanation of this equivalence and [27] (page 50, Theorem 2)
for the result in linear algebra in which such equivalence is justified.



CHAPTER 3. THE CONSEQUENCE RELATION η.ζ 25

since φ is not a tautology. Similarly if βr ` φ then it follows from (3.5) that the

rth coordinate of ~χj is non-zero for at most

Md(f − e) + cf
n∑
i=1

Ni =
cN + d2M(f − e)

d

many j. Hence ∨
S⊆{1,...,N}

|S|> cN+d2M(f−e)
d

∧
j∈S

χj ` ⊥. (3.7)

Now let

Z = 1 +
cN + d2M(f − e)

d

T = 1 +
cN − d2eM

d

so 1 ≤ T < Z and

Td(f − e) = fcN − edZ + df.

From (3.6), (3.7) we have that ∨
S⊆{1,...,N}
|S|=Z

∧
j∈S

χj ` ⊥, (3.8)

∨
S⊆{1,...,N}
|S|=T

∧
j∈S

χj ` φ, (3.9)

Td(f − e) = fcN − edZ + df and T < Z. (3.10)

Conversely suppose that for some T, Z ∈ N and χ1, ..., χN (not necessarily

those above) (3.8), (3.9) and

Td(f − e) ≤ fcN − edZ + df and 1 ≤ T < Z (3.11)

hold. Then for any atom α ∈ AtL , if α ` ¬φ then for at most T − 1 many j can

we have that α ` χj. Similarly if α ` φ then there can be at most Z − 1 such j.

Hence, using the earlier vector notation but now with the genuine atoms in AtL
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replacing the β’s in B we have that

N∑
j=1

~χj ≤ (T − 1)~1 + (Z − T )~φ. (3.12)

Now suppose ~x ∈ D2l and ~χj · ~x ≥ c
d

for j ∈ {1, ..., N}. Then dotting each

side of (3.12) with ~x we obtain

(Z − T )~φ · ~x ≥ c

d
N − T + 1.

But from (3.11) we have that

c
d
N − T + 1

Z − T
≥ e

f

so ~φ · ~x ≥ e
f
.

To sum up, if (3.8), (3.9) and (3.11) hold then

χ1, ..., χN
c
d . e

f
φ

and by Proposition 12 (i) (if necessary) we have

θ1, ..., θn
c
d . e

f
φ.

Conversely if

θ1, ..., θn
c
d . e

f
φ

then there are sentences χ1, ..., χN ∈ Γ (possibly with repeats) such that for some

Z and T conditions (3.8), (3.9) and (3.11) hold. [Indeed we can even have equality

in the first inequality in (3.11) though for practical purposes it is very convenient

to adopt the weaker version.]

Taking η = c
d

and ζ = e
f

we now obtain the following propositional equivalent

of η.ζ . We will complete the proof of this theorem for possibly irrational η, ζ

at the end of the next section (which will assume this theorem but only in the

proved rational case).

Theorem 15 Let η, ζ ∈ (0, 1]. Then for θ1, ..., θn, φ ∈ SL,

θ1, ..., θn
η .ζ φ ⇐⇒
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∃χ1, ..., χN ∈ {θ1, ..., θn} (possibly with repeats) and T, Z ∈ N such that

T (1− ζ) ≤ ηN − ζZ + 1, T < Z and∨
S⊆{1,...,N}
|S|=Z

∧
j∈S

χj ` ⊥,

∨
S⊆{1,...,N}
|S|=T

∧
j∈S

χj ` φ.

Proof. The proof follows from the above discussion except for the case when φ is

a tautology.

Let us then assume that φ is a tautology. Then both sides hold since we can

take T = N = 0 and Z = 1. �

Theorem 15 allows us to work with η.ζ entirely within the framework of the

propositional calculus.

To give an idea of how this works in practice let us consider an example.

Let Γ = {p ∧ q, p ∧ ¬q ∧ r,¬p ∧ q ∧ r} and φ = r.

To see that indeed Γ
1
3 . 2

3
φ it is enough here to take χ1 = p ∧ ¬q ∧ r

and χ2 = ¬p ∧ q ∧ r (so N = 2). Then, for Z = 2 and T = 1, the

conditions (3.8), (3.9) and (3.11) in the above discussion hold.

3.3 FΓ,θ: Definition and some properties

We have seen in the previous section that if Γη .ζ θ then Γη .ζ− θ for any

ζ− < ζ. In this sense the supremum of ζ for which Γη .ζ θ at each value η is of

special interest.

Let us define the map FΓ,θ as follows, for all η ∈ [0, 1]:

FΓ,θ(η) = sup { ζ |Γη .ζ θ }.

We now state some basic properties of FΓ,θ. The first one is rather trivial.

Proposition 16 FΓ,θ is increasing.
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Proof. It follows directly from the definition of η.ζ . �

The next proposition states that, given Γ η-consistent, the value FΓ,θ(η) is

actually attainable by a certain probability function. The proof of this proposition

makes use of the fact that we can represent sentences and probability functions

as 2l-coordinate vectors (see Section 1.1).

For the next propositions let Γ = {φ1, ..., φm} ⊆ SL and θ ∈ SL.

Proposition 17 Let Γ be η-consistent, η ∈ [0, 1]. There exists a probability

function w such that w(Γ) ≥ η and w(θ) = FΓ,θ(η).

Proof. Let MΓ be the matrix representing the set of sentences Γ with respect to

the atoms of L and ~θ the sentence θ.

We can define a decreasing sequence {ζn} whose limit is ζ such that for all

n ∈ N there exists a probability function wn with wn(θ) = ζn and wn(Γ) ≥ η. By

using the same notation as above we can represent {wn} by a sequence of vectors

{ ~xn} such that ~θ · ~xn = ζn for all n ∈ N and (MΓ( ~xn)T )j ≥ η for all j ∈ {1, ...,m}.
We need to prove now that there exists a probability function ~x ∈ D2l such

that ~θ · ~x = ζ and (MΓ(~x)T )
j ≥ η for all j ∈ {1, ...,m}.

We can take a convergent subsequence {~x1
nr} in the first coordinates of {~xn}.

We know such a convergent subsequence needs to exist and converge in the in-

terval [0, 1] by compactness –the first components (~xn)1 of the vectors of the

sequence {~xn} are all in the compact space [0, 1]. Next we can pick a convergent

subsequence {~x2
nr} in the second coordinates of {~x1

nr}. As before, such subse-

quence needs to exist by compactness. We can proceed in the same way for the

other coordinates.

The final subsequence, {~x2l

nr}, will have as a limit the probability function

~x ∈ D2l such that (MΓ(~x)T )
j ≥ η for all j ∈ {1, ...,m} and ~θ · ~x = ζ. �

Proposition 18 FΓ,θ is convex on [0,mc(Γ)].

Proof. Assume that 0 ≤ η1 < η2 ≤ mc(Γ). By definition FΓ,θ will be convex on

[0,mc(Γ)] if and only if, for all λ ∈ [0, 1],

FΓ,θ(λη1 + (1− λ)η2) ≤ λFΓ,θ(η1) + (1− λ)FΓ,θ(η2).

By Proposition 17 we know that there exists a probability function w1 such

that w1(Γ) ≥ η1 and w1(θ) = FΓ,θ(η1). In the same way we know that there exists

a probability function w2 such that w2(Γ) ≥ η2 and w2(θ) = FΓ,θ(η2).
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Thus we can define a new probability function w as follows:

w(φ) = λ1w1(φ) + (1− λ2)w2(φ)

for φ ∈ SL.

Then w(Γ) ≥ λ1η1 + (1− λ2)η2 and w(θ) = λ1FΓ,θ(η1) + (1− λ2)FΓ,θ(η2).

It follows that

FΓ,θ(λ1η1 + (1− λ2)η2) ≤ λ1FΓ,θ(η1) + (1− λ2)FΓ,θ(η2).

Therefore FΓ,θ is convex on [0,mc(Γ)]. �

Proposition 19 FΓ,θ is continuous on [0,mc(Γ)].

Proof. Let us prove it by reductio ad absurdum.

Suppose FΓ,θ is not continuous from the right at η ∈ [0,mc(Γ)).

That means that there exists ε > 0 such that, for all x ∈ (η,mc(Γ)],

|FΓ,θ(x)− FΓ,θ(η)| > ε

Let us consider x = λmc(Γ) + (1− λ)η, where

λ =
ε−

FΓ,θ(mc(Γ))− FΓ,θ(η)

with 0 < ε− < ε. Then

FΓ,θ(x) ≤ λFΓ,θ(mc(Γ)) + (1− λ)FΓ,θ(η)

since FΓ,θ is convex.

Therefore

|FΓ,θ(x)− FΓ,θ(η)| ≤ |λFΓ,θ(mc(Γ)) + (1− λ)FΓ,θ(η)− FΓ,θ(η)| = ε− < ε

which contradicts the assumption we started with.

To prove continuity from the left at η ∈ (0,mc(Γ)] let us consider again MΓ,

the matrix of Γ with respect to the atoms of L, and the vector ~θ.

Let us assume FΓ,θ is not continuous from the left at η.
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Let ζ = sup {FΓ,θ(γ) | γ < η}. We can define an increasing sequence {ηn} with

limit η and a sequence {ζn} with limit ζ such that for all n ∈ N there exists a

probability function wn with wn(Γ) = ηn and wn(θ) = ζn. We can represent {wn}
by a sequence of vectors { ~xn} such that (MΓ( ~xn)T )j ≥ ηn for all j ∈ {1, ...,m}
(with (MΓ( ~xn)T )j ≥ ηn for some j) and ~θ · ~xn = ζn for all n.

We can take a convergent subsequence {~x1
nk
} in the first coordinates of {~xn}.

We know such a convergent subsequence exists by compactness –the first com-

ponents (~xn)1 of the vectors of the sequence {~xn} are all in the compact space

[0, 1]. Next we can pick a convergent subsequence {~x2
nk
} in the second coordinates

of {~x1
nk
}. As before, such subsequence needs to exist by compactness. We can

proceed in the same way for the other coordinates. The final subsequence, {~x2l

nk
},

will have as a limit a probability function ~x such that (MΓ(~x)T )j ≥ η for all

j ∈ {1, ...,m} and ~θ · ~x = limn→∞ FΓ,θ(ηn) = ζ since FΓ,θ is increasing. Therefore

FΓ,θ needs to be continuous from the left at η. �

Proposition 20 FΓ,θ is made up of a finite number of line segments with rational

coefficients.

Proof. Let R = 〈R,+, <,=, 0, 1〉. The set

{(x, y) ∈ R2| y = FΓ,θ(x)}

is R-definable and, since R is an elementary extension of the structure

Q = 〈Q,+, <,=, 0, 1〉,

it is Q-definable too.

The theory of R has quantifier elimination (see for example [29]). Therefore

the set

{(x, y) ∈ R2| y = FΓ,θ(x)}

is given by a finite boolean combination (which reduces to a finite union of inter-

sections by the complement and distributive laws for sets) of sets of the form

{(x, y) ∈ R2|my < nx+ k}

and

{(x, y) ∈ R2|my = nx+ k},
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for n,m, k ∈ Z.

Notice that each intersection of sets of such form is convex so, since FΓ,θ is a

function, such intersection has to be a polynomial of the above mentioned form,

with coefficients in Q. �

Next we state some further conditions FΓ,θ needs to satisfy.

Proposition 21 FΓ,θ(0) ∈ {0, 1}, FΓ,θ(1) ∈ {0, 1} and on the interval (mc(Γ), 1]

FΓ,θ has constant value 1.

Proof. Notice that FΓ,θ(0) = 1 if and only if θ is a tautology. Otherwise FΓ,θ(0) =

0.

The fact that on the interval (mc(Γ), 1] FΓ,θ has constant value 1 follows

directly from the definition of η.ζ .

If Γ is not 1-consistent then clearly FΓ,θ(1) = 1. Notice that Γ is 1-consistent

if and only if Γ is consistent. If Γ is consistent then FΓ,θ(1) = 1 only if Γ ` θ by

Proposition 10 (iii), otherwise FΓ,θ(1) = 0. �

Proposition 22 The line segments y = q1x + q2 that constitute FΓ,θ are such

that q1 = q2 = 0 or q1 = 0 and q2 = 1 or q1 ≥ 1− q2 ≥ 1.

Proof. Let us assume that q1 > 0 (otherwise q2 ∈ {0, 1} by what has already

been proved) and pick an interior rational point (η, ζ) on this line segment (so

η, ζ < 1). FΓ,θ(x) will be of the form q1x + q2 for all x in a neighborhood of η,

say (η − ε, η + ε) (for some ε > 0).

By Theorem 15 for rational values there exist N , Z and T for this pair and

the corresponding Γ and θ that give the propositional equivalent of Γη .ζ θ. Notice

that T ≥ 1 (otherwise ` θ and q1 = 0, q2 = 1) and T ≤ N (otherwise q1 = q2 = 0).

So

(1− ζ)T ≤ ηN − ζZ + 1

and

ζ ≤ ηN − T + 1

Z − T
. (3.13)

Clearly we must have equality in (3.13) since otherwise we could increase ζ to

some ζ+ and these values of N , Z and T would give a propositional equivalent

for Γη .ζ+ θ, contradicting the fact that FΓ,θ(η) = ζ.
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Notice also that the line

y =
xN − T + 1

Z − T

must be the same as the line y = q1x + q2 since otherwise the values N , Z

and T considered above would give a propositional equivalent for Γη
′
.ζ′ θ, with

η′ ∈ (η− ε, η + ε) (η′ ∈ Q, η′ 6= η) and ζ ′ > q1η
′ + q2 , contradicting the fact that

FΓ,θ(x) = q1x+ q2 on the interval (η − ε, η + ε).

Therefore q1 = N
Z−T and q2 = 1−T

Z−T . Notice that Z ≤ N + 1 since otherwise we

could replace Z by N+1 without changing the required conditions and that would

contradict the fact that FΓ,θ(η) = ζ. The required inequalities q1 ≥ 1 − q2 ≥ 1

follow. �

3.4 A representation theorem for FΓ,θ

Next we show that any function satisfying the properties stated in Proposi-

tions 16, 18, 19, 20, 21 and 22 above is of the form FΓ,θ for some Γ and θ in a

finite language L. The next lemma is key to proving this.

Lemma 23 Given Γ1,Γ2, θ1, θ2 there are Γ and θ such that

FΓ,θ(x) = max {FΓ1,θ1(x), FΓ2,θ2(x)}.

Proof. We may assume that Γ1 ⊆ SL1, Γ2 ⊆ SL2 and θ1 ∈ SL1, θ2 ∈ SL2,

for L1 = {p1, ..., pn} and L2 = {q1, ..., qm} disjoint languages with atoms AtL1 =

{α1, ..., α2l} and AtL2 = {β1, ..., β2m} respectively. Let L = L1 ∪ L2 and set

Γ = Γ1 ∪ Γ2 ⊆ SL and θ = θ1 ∨ θ2 ∈ SL.

First note that by the language invariance of η.ζ if w is a probability function

on L such that w(Γ) ≥ η then w(θ1) ≥ FΓ1,θ1(η) and w(θ2) ≥ FΓ2,θ2(η), so

certainly

w(θ) ≥ max{FΓ1,θ1(η), FΓ2,θ2(η)}.

Thus it only remains to show that there is some probability function w which

takes exactly this value.

Without loss of generality assume that

FΓ1,θ1(η) ≥ FΓ2,θ2(η).
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Let w1 be a probability function on L1 such that w1(Γ1) ≥ η, w1(θ1) = FΓ1,θ1(η)

and w2 a probability function on L2 such that w2(Γ2) ≥ η, w2(θ2) = FΓ2,θ2(η).

We define a finite sequence of probability functions {wr} on L such that for

each r

wr(αi) = w1(αi) for i ∈ {1, ..., 2l},

wr(βj) = w2(βj) for j ∈ {1, ..., 2m}, (3.14)

so in consequence

wr(θ1) = FΓ1,θ1(η) ≥ wr(θ2) = FΓ2,θ2(η)

and such that for the final wr in this sequence

wr(θ) = wr(θ1),

equivalently

wr(αi ∧ βj) = 0 whenever αi 0 θ1, βj ` θ2. (3.15)

To start with set

w0(αi ∧ βj) = w1(αi) · w2(βj).

Now suppose we have successfully constructed wr. If (3.15) holds for this wr

then we are done. Otherwise take the atoms αi∧βj with wr(αi∧βj) > 0, βj ` θ2,

αi 0 θ1. In this case we can find an atom αp ∧ βq with wr(αp ∧ βq) > 0, αp ` θ1,

βq 0 θ2. Such an atom of L must exist since if not then

wr(θ2) =
∑
t

wr(αit ∧ βjt) +
∑
s

wr(αis ∧ βjs)

and

wr(θ1) =
∑
t

wr(αit ∧ βjt)

for t, s such that βjt ` θ2, αit ` θ1, βjs ` θ2, αis 0 θ1. But then

FΓ2,θ2(η) = wr(θ2) > wr(θ1) = FΓ1,θ1(η),

contradiction.
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Now define wr+1 as follows, for i, j, p and q as above:

wr+1(αi ∧ βj) = wr(αi ∧ βj)−min{wr(αi ∧ βj), wr(αp ∧ βq)},

wr+1(αi ∧ βq) = wr(αi ∧ βq) + min{wr(αi ∧ βj), wr(αp ∧ βq)},

wr+1(αp ∧ βj) = wr(αp ∧ βj) + min{wr(αi ∧ βj), wr(αp ∧ βq)},

wr+1(αp ∧ βq) = wr(αp ∧ βq)−min{wr(αi ∧ βj), wr(αp ∧ βq)},

and wr+1 agreeing with wr on all other atoms of L. Then again we have (3.14)

holding for wr+1 in place of wr and compared with wr the probability function

wr+1 gives non-zero probability to strictly fewer atoms αi∧βj with either βj ` θ2

and αi 0 θ1 or with αi ` θ1 and βj 0 θ2. Clearly then this process eventually

terminates at the required probability function. �

We now state and prove the representation theorem we mentioned at the

outset.

Theorem 24 Let r ∈ [0, 1] ∩Q and let F be a function such that

(i) F is increasing, with F (0) ∈ {0, 1} and F (1) ∈ {0, 1}.

(ii) On [0, r] F is continuous and convex and made up of a finite number

of line segments of the form q1x+ q2 with q1, q2 ∈ Q and q1 ≥ 1− q2 ≥ 1.

(iii) F (x) = 1 for all x ∈ (r, 1].

Then there are Γ and θ such that F = FΓ,θ on [0, 1].

Proof. In view of Lemma 23, it is enough to show

(A) If r ∈ [0, 1] ∩Q then there are Γ and θ such that

FΓ,θ(x) =

{
0 for 0 ≤ x ≤ r,

1 for r < x ≤ 1.

(Notice that if r = 1 the result is trivial. We can take θ to be a contradiction

and Γ any consistent set of sentences).

(B) If q1, q2 ∈ Q, q1 ≥ 1− q2 ≥ 1 then there are Γ and θ such that

FΓ,θ(x) =


0 for 0 ≤ x ≤ −q2

q1
,

q1x+ q2 for −q2
q1
≤ x ≤ 1−q2

q1
,

1 for 1−q2
q1
≤ x ≤ 1.
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We can proceed in several ways to define suitable Γ and θ for the graphs

described above, both for (A) and for (B). Here we adopt what I call the matrix

approach -we first set a suitable matrix for the Γ and θ we are looking for (as

seen in Section 1.1)2 and then from it we define Γ and θ by considering suitable

disjunctions of atoms (to view a slightly different approach see [35]).

To show (A), if r = 0 just take θ to be a contradiction and Γ = {θ}.
Suppose that r = s

t
> 0. Let us set a matrix of 0′s and 1′s with t + 1 rows

and t columns. The row t+1 will consist of t 0′s. For the other rows we will have

exactly s 1′s distributed as follows: For the ith row we will have s consecutive 1′s

starting at the ith coordinate (when we reach the last column we go back to the

first one and carry on until we complete a sequence of s consecutive 1′s).

This way we get the matrix MΓ,θ.

We will associate an atom to each column. We will thus need at least t distinct

atoms, α1, ..., αt ∈ AtL (L has to be large enough: 2|L| ≥ t).

For the first t rows we will define a sentence as follows: For the ith row we

will set φi to be the disjunction of the atoms for the columns that at the ith row

have coordinate 1. We will take Γ to be the set given by these sentences. The

row t+ 1 corresponds to the sentence θ. Since this row only contains 0′s we will

take θ to be a contradiction.

Let w be a probability function on L that gives Γ its maximum consistency. We

can identify w with a vector ~x ∈ D2|L| . Any permutation of the first t coordinates

of ~x of the form xi −→ xi+1 for i ∈ {1, ..., t − 1} and xt −→ x1 will give us a

new probability function that gives Γ its maximum consistency and thus so will

the average over these permutations. Hence we see that Γ attains its maximum

consistency of s
t

for the probability function which gives each αi, for i ∈ {1, ..., t},
probability 1

t
.

To show (B) let us first suppose that q1 = 1 and q2 = 0. In this case we can

set θ to be a tautology.

Let us suppose now that −q2
q1

= r
t

and 1−q2
q1

= s
t

where, by the conditions on

q1 and q2, 0 ≤ r
t
≤ s

t
≤ 1.

We will proceed as above by setting a matrix of 0′s and 1′s with t + 1 rows

and 2t columns.

2Though the resulting ordering of the columns of the matrix for Γ and θ will be distinct to
the one mentioned in Section 1.1.
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The row t+1 will consist of 0′s for the first t columns and 1′s from the column

t+1 onwards. For the other rows we will have exactly r 1′s for the first t columns

and exactly s 1′s for last t columns distributed as follows: For the ith row we will

have r consecutive 1′s starting at the ith coordinate (when we reach the column

t we go back to the first one and carry on until we complete a sequence of s

consecutive 1′s) and s consecutive 1′s starting at the column t+ i (when we reach

the column 2t we go back to the column t + 1 and carry on until we complete a

sequence of r consecutive 1′s).

This way we get the matrix for Γ and θ, MΓ,θ.

We associate an atom to each column (we need at least 2t atoms, α1, ..., α2t ∈
AtL) and define the sentences φ1, ..., φt and θ by considering suitable disjunctions

of such atoms as we did in the previous case.

Then if w(αi) = 1
t
, for i ∈ {1, ..., t}, w(Γ) = r

t
and w(θ) = 0, so FΓ,θ(

r
t
) = 0.

Now let r
t
≤ g < s

t
, FΓ,θ(g) = h < 1 and let w be the probability function

attaining such supremum. As above we can assume that w(αi) has constant

value, a say, for i ∈ {1, ..., t} and constant value, b say, for i ∈ {t+ 1, ..., 2t} and

that all the probability is assigned to α1, ..., α2t. Then h = tb, g = sb + ra and

ta+ tb = 1 so h = tg−r
s−r = q1g + q2. From this and the properties of FΓ,θ part (B)

follows. �

Let us look at an example to see how this works in practice.

Suppose that we want to find Γ and θ for which FΓ,θ is as follows:

FΓ,θ(x) =


0 0 ≤ x ≤ 2

5

5x− 2 if 2
5
< x < 3

5

1 if 3
5
≤ x ≤ 1.

We can set a suitable matrix for Γ and θ as explained above:

MΓ,θ =



1 1 0 0 0 1 1 1 0 0

0 1 1 0 0 0 1 1 1 0

0 0 1 1 0 0 0 1 1 1

0 0 0 1 1 1 0 0 1 1

1 0 0 0 1 1 1 0 0 1

0 0 0 0 0 1 1 1 1 1
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Let us take ten atoms α1, ..., α10 in a sufficiently large language L, one

for each column of the matrix.

By following the above procedure we will get the following set of

sentences Γ = {φ1, φ2, φ3, φ4, φ5}:

φ1 = α1 ∨ α2 ∨ α6 ∨ α7 ∨ α8,

φ2 = α2 ∨ α3 ∨ α7 ∨ α8 ∨ α9,

φ3 = α3 ∨ α4 ∨ α8 ∨ α9 ∨ α10,

φ4 = α4 ∨ α5 ∨ α9 ∨ α10 ∨ α6,

φ5 = α5 ∨ α1 ∨ α10 ∨ α6 ∨ α7.

On the other hand θ will be given by the following disjunction:

θ = α6 ∨ α7 ∨ α8 ∨ α9 ∨ α10.

It is easy to see that FΓ,θ indeed corresponds to the graph defined

above.

3.5 Theorem 15 revisited

At this point we finally return to complete the proof of Theorem 15 in the

case when one or both values for η and ζ are irrational.

Proof. (of Theorem 15 continued). We first consider the case where η is irrational

and ζ rational. In this case if Γη .ζ φ then by Proposition 20 FΓ,θ(x) = q1x + q2

for some q1, q2 ∈ Q for all x in some open non-empty neighborhood (η− ε, η+ ε).

Since q1η + q2 is irrational (q1 6= 0 otherwise ζ = 0) it must be that q1η + q2 > ζ

so there are r1, r2 ∈ Q (with r1 ∈ (η − ε, η + ε)) such that r1 < η, r2 > ζ and

q1r1 + q2 ≥ r2. We then have that FΓ,θ(r1) ≥ r2 so there is some χ1, ..., χN ∈ Γ

and Z, T such that T (1− r2) ≤ r1N − r2Z + 1, T < Z ≤ N + 1 and

∨
S⊆{1,...,N}
|S|=Z

∧
j∈S

χj ` ⊥, (3.16)
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∨
S⊆{1,...,N}
|S|=T

∧
j∈S

χj ` φ. (3.17)

But then

T (1− ζ) ≤ ηN − ζZ + 1 (3.18)

as required.

Conversely if we have χ1, ..., χN ∈ Γ and Z, T satisfying (3.16),(3.17) and

(3.18) then the inequality in (3.18) must be strict, since ζ ∈ Q so there must be

r1 < η, r2 > ζ such that

T (1− r2) ≤ r1N − r2Z + 1.

Thus by the two rational case already proved Γ r1 .r2 φ and, by Proposition 9,

Γη .ζ φ.

The case where η ∈ Q, ζ /∈ Q is proved similarly.

Suppose that both η and ζ are irrational. If Γη .ζ φ and FΓ,θ(η) = q1η+q2 > ζ

then we can proceed as in the previous case. So suppose FΓ,θ(η) = q1η + q2 = ζ.

In this case by Proposition 20 FΓ,θ(x) = q1x + q2 for x in some non-empty open

neighborhood (η − ε, η + ε). Pick r1 in this interval and set r2 = q1r1 + q2. Then

by the two rational case there are some χ1, . . . , χN ∈ Γ, Z and T such that T < Z

and T (1−r2) ≤ r1N−r2Z+1. Notice that we must have equality here, otherwise

we could increase r2 with r1 fixed and so (using the two rational case) show that

FΓ,θ(r1) > r2. It must be the case that the two lines T (1− y) = xN − yZ + 1 and

y = q1x + q2 are the same, otherwise the former would go above the latter at a

rational point in the interval (η− ε, η+ ε), contradicting the proved completeness

result in the rational case.

This provides the required equivalent to Γη .ζ φ.

Finally in the other direction in the case η, ζ /∈ Q, suppose that we have the

required T, Z and χ1, ..., χN satisfying (3.17),(3.16) and (3.18). Then for rational

r1 close to η and r2 ≤ r1N−T+1
Z−T , r2 close to ζ these same χ1, ..., χN , Z and T give

Γr1 .r2 φ. Since r1 and r2 can be made arbitrarily close to η and ζ respectively

we can conclude by Proposition 13 that Γη .ζ φ, as required. �
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3.6 A brief note on the values of N , Z and T

In Theorem 15 we established an equivalence between η.ζ and some condition

only dependent of propositional logic. That condition was formulated in terms

of three values: N , Z and T .

Let us recall the theorem:

Let η, ζ ∈ (0, 1]. Then for φ1, ..., φn, θ ∈ SL,

φ1, ..., φn
η .ζ θ ⇐⇒

∃χ1, ..., χN ∈ {φ1, ..., φn} (possibly with repeats) and T, Z ∈ N such that

T (1− ζ) ≤ ηN − ζZ + 1, T < Z and∨
S⊆{1,...,N}
|S|=Z

∧
j∈S

χj ` ⊥,

∨
S⊆{1,...,N}
|S|=T

∧
j∈S

χj ` θ.

We have that N , Z and T need to be positive integers, that T < Z and that

Z need not be greater than N + 1. The question rests on N . How big can N be?

Can we set an upper bound on N in terms of the size of Γ?

As above, consider Γ = {φ1, ..., φn} ⊆ SL η-consistent and θ ∈ SL. First

notice that the maximum number of distinct sentences in the set B is 2n and

thus the maximum number of sets of sentences of this form is 22n . Therefore the

number of distinct matrices MΓ,θ that we can have for |Γ| = n is 22n+1
.

We can find values N,Z and T for which the above propositional equivalence

for Γη .FΓ,θ(η) θ holds (notice that such values are valid in general for Γη .ζ θ, with

0 ≤ ζ ≤ FΓ,θ(η)). Since such values depend only on the sentences in B and θ

–that is to say, on the matrix MΓ,θ– we will have that we can effectively fix an

upper bound for N (since the number of distinct matrices MΓ,θ that we can have

is finite).

We do not know about any sharp bound for N though. The next example

shows that any bound for N that we could determine would be pretty large.
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Consider a collection of prime numbers p1, ..., pk.

Next, for each number pi, consider a set of pi + 1 distinct atoms,

αi1, ..., α
i
pi+1 ⊂ AtL,

where L is large enough to allow for such a number of atoms.

Let ∆i = {φi1, ...φipi+1} be the collection of sentences given by all

the distinct disjunctions of pi of the atoms αi1, ..., α
i
pi+1, for each i ∈

{1, ..., k}.

Set Γ =
⋃k
i=1 ∆i.

Let w be a probability function for which w(Γ) = mc(Γ). Then, by

symmetry, we will have that

w(αi1) = w(αi2) = ... = w(αipi+1) = ai,

for some values ai, and

a1p1 = a2p2 = ... = akpk

for all i ∈ {1, ..., k}. (Notice that a1p1 = mc(Γ)).

By the properties of probability functions we will also have that

k∑
i=1

ai(pi + 1) = 1.

From all these identities it follows that

mc(Γ) =

∏k
i=1 pi∑k

i=1

∏
j 6=i pj(pi + 1)

.

Let us define the sentence θ as follows:

θ =
k∨
i=1

pi+1∨
j=1

αij.

Assume that there exists α ∈ AtL such that α 0 θ (that is to say, θ is
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not a tautology).

Then the graph of FΓ,θ on [0,mc(Γ)] will then consist of a line segment

joining the origin (0, 0) and (mc(Γ), 1) with slope∑k
i=1

∏
j 6=i pj(pi + 1)∏k
i=1 pi

.

For any pair (η, ζ) on this line segment we will have that Γη .ζ θ and

the values N,Z and T for which the condition above holds will have

to satisfy the equality

N

Z − T
=

∑k
i=1

∏
j 6=i pj(pi + 1)∏k
i=1 pi

.

For the choices of p1, ..., pk such fraction will be irreducible and thus

N ≥
∑k

i=1

∏
j 6=i pj(pi + 1). That this value is large is clear. Consider

for example p1 = 29, p2 = 31 and p3 = 37. We have

p2p3(p1 + 1) + p1p3(p2 + 1) + p1p2(p3 + 1)

p1p2p3

=
102908

33263

which is a proper fraction. Thus N ≥ 102908 for this example

when working with pairs (η, ζ) on the line segment joining (0, 0) and

(mc(Γ), 1), and that for a relatively small Γ (|Γ| = 100).

3.7 An Example

In this section we give a real world example of how the consequence relation
η.ζ works in practice.

A dedicated naturalist has acquired, and remembered, the following facts

concerning the world’s largest amphibian:

• It can kill a chicken and comes from Japan.

• It is not the Japanese salamander but it can kill a chicken.

• It is a salamander and if it is not a chicken killer then it must be the

Japanese salamander.
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Taking p to stand for ’it can kill a chicken’, q to stand for ’it is Japanese’ and

r to stand for ’it is a salamander ’ these can be formalized as p ∧ q, ¬(q ∧ r) ∧ p
and r ∧ (¬p→ (r ∧ q)).

Denoting this set by Γ we find that mc(Γ) = 2
3
, being given by the probability

function which gives each of the atoms p∧q∧r, p∧q∧¬r and p∧¬q∧r probability
1
3
. From this it follows that

Γ
2
3 . 2

3
p ∧ r.

In other words if our naturalist sets his primary threshold at 2
3

then on the

basis of just this knowledge Γ he should be willing to accept ’it is a chicken killing

salamander ’ at this same threshold.

On the other hand if the naturalist felt that his recall was so faulty that

a higher secondary threshold was required before actually making any public

assertion based on it then setting the threshold at its highest possible value of 1

would give

Γ
2
3 .1 p ∧ (q ∨ r).

In other words, with this more rigorous demand in place, the naturalist should

still be happy to assert that the world’s largest amphibian is ’a chicken killer and

either Japanese or a salamander ’.

In the other direction lowering the secondary threshold sufficiently would in

this case enable the naturalist to make stronger assertions, but at the same time

risk being unacceptably inconsistent. For example

Γ
2
3 . 1

3
r, ¬r

so at the threshold 1
3

he would be directly asserting both the statement that it is

a salamander and the statement that it is not a salamander.



Chapter 4

Inference from inconsistent

premises: Other approaches

In this chapter we review some relevant inference relations in the literature

and compare them with η.ζ on distinct grounds. We also define a consequence

relation based on the notion of η-coherence presented in Chapter 2.

4.1 η.ζ and consistency

In this section we compare η.ζ in terms of consistency with other consequence

relations. Even though the aim of η.ζ is not to yield a consistent set of conse-

quences (in our approach this is in general rather irrelevant) it may have some

interest in some situations.

First we introduce some other inference relations from the literature. We

proceed as in [4] and [3] to a large extent.

We start with some definitions.

Throughout let Γ = {φ1, ..., φk} ⊆ SL and θ ∈ SL.

Definition 25 We say that ∆ ⊆ Γ is maximally consistent if and only if ∆ is

consistent and, for all φ ∈ Γ−∆, ∆ ∪ {φ} ` ⊥.

Definition 26 We say that ∆ ⊆ Γ is minimally inconsistent if and only if ∆ is

inconsistent and, for all φ ∈ ∆, ∆− {φ} 0 ⊥.

We will denote the collection of maximally consistent subsets of Γ byMC(Γ)

and the collection of minimally inconsistent subsets by MI(Γ).

43
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The approach made by Rescher and Manor in [42] is among the most pop-

ular when dealing with inconsistent information. They define two consequence

relations for this purpose.

Definition 27 θ is said to be a universal (or inevitable) consequence of Γ (de-

noted by Γ `∀ θ) if and only if, for all ∆ ∈MC(Γ), ∆ ` θ.

Definition 28 θ is said to be an existential consequence of Γ (denoted by Γ `∃ θ)

if and only if there exists ∆ ∈MC(Γ) for which ∆ ` θ.

We will denote the set of consequences of Γ under `∀ by C∀(Γ) and those

under `∃ by C∃(Γ).

Throughout C(Γ) will denote the set of consequences of Γ under classical

entailment.

Given the difficulty of finding all the maximal consistent subsets of a set

of sentences (in general the cardinality of MC(Γ) increases exponentially with

respect to the cardinality of Γ) some authors have proposed selecting a subset of

MC(Γ) (see [4]), denoted in this reference by Lex(Γ) and defined as follows: For

∆ ∈MC(Γ), ∆ ∈ Lex(Γ) if and only if, for all ∆′ ∈MC(Γ), |∆| ≥ |∆′|.

Definition 29 θ is said to be a Lex-consequence of Γ (denoted by Γ `Lex θ) if

and only if, for all ∆ ∈ Lex(Γ), ∆ ` θ.

We will denote the set of consequences of Γ under `Lex by CLex(Γ).

For the next approach we appeal to minimally inconsistent subsets.

Define

Inc(Γ) = {φ ∈ SL| ∃∆ ∈MI(Γ), φ ∈ ∆}

and

Free(Γ) = Γ− Inc(Γ).

Definition 30 θ is said to be a Free-consequence of Γ (denoted by Γ `Free θ) if

and only if Free(Γ) ` θ.

The set of consequences of Γ under `Free will be denoted by CFree(Γ).

It is interesting to observe that, for all Γ ⊆ SL,

CFree(Γ) ⊆ C∀(Γ) ⊆ CLex(Γ) ⊆ C∃(Γ).1

1See [4] for a proof and more details.
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We now move back to our probability approach.

Throughout let Cη,ζ(Γ) = {θ ∈ SL| Γη .ζ θ}.

The next proposition shows that the consequence relation η.ζ does not do

completely away with inconsistency. For certain values of η η.ζ explodes like

classical entailment.

Proposition 31 Assume that Γ is inconsistent and let 1 ≥ η > mc(Γ). Then

Cη,ζ(Γ) = C(Γ) = SL.

Proof. It follows trivially from the definition of η.ζ . �

The next two propositions state some closure properties of Cη,ζ(Γ).

Proposition 32 Let λ < η. We have that Cλ,ζ(Γ) ⊆ Cη,ζ(Γ)

Proof. The result follows trivially from observing that the set of probability

functions w such that w(Γ) ≥ η is a subset of that of probability functions w for

which w(Γ) ≥ λ.

Let θ ∈ Cλ,ζ(Γ). Thus, for all w, if w(Γ) ≥ λ then w(θ) ≥ ζ. But then, since

η > λ, θ ∈ Cη,ζ(Γ) too. �

Proposition 33 Let ζ < µ. We have that Cη,µ(Γ) ⊆ Cη,ζ(Γ).

Proof. Let θ ∈ Cη,µ(Γ). Then, for all w, if w(Γ) ≥ η then w(θ) ≥ µ > ζ. Thus

θ ∈ Cη,ζ(Γ) too. �

Throughout let us assume that B = {β1, ..., βm}.

Proposition 34 Assume that 0 ≤ η ≤ mc(Γ) and 0 < ζ ≤ 1. We have what

follows:

Cη,ζ(Γ) = {θ ∈ SL| ∃C ⊆ B,
∨
C ` θ and FΓ,

∨
C(η) ≥ ζ}.

Proof. It is clear that

{θ ∈ SL| ∃C ⊆ B,
∨
C ` θ and FΓ,

∨
C(η) ≥ ζ} ⊆ Cη,ζ(Γ).

Let us assume now that θ ∈ Cη,ζ(Γ) and that η > 0 (notice that for η = 0 the

set Cη,ζ(Γ) becomes the set of tautologies of SL and thus the result is trivial).

Recall from Theorem 15 that
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Γ η .ζ θ ⇐⇒

∃χ1, ..., χN ∈ Γ (possibly with repeats) and T, Z ∈ N such that

T (1− ζ) ≤ ηN − ζZ + 1, T < Z and∨
S⊆{1,...,N}
|S|=Z

∧
j∈S

χj ` ⊥,

∨
S⊆{1,...,N}
|S|=T

∧
j∈S

χj ` θ.

Notice though that the sentence∨
S⊆{1,...,N}
|S|=T

∧
j∈S

χj

is of the form (or logically equivalent to one of the form)
∨
C, for some C ⊆ B.

This proves that

Cη,ζ(Γ) ⊆ {θ ∈ SL| ∃C ⊆ B,
∨
C ` θ and FΓ,

∨
C(η) ≥ ζ}

and completes the proof. �

Proposition 35 Cη,ζ(Γ) is consistent if and only if there exists a nonempty set

C ⊆ B such that
∨
C ` θ for all θ ∈ Cη,ζ(Γ).

Proof. The implication from right to left follows trivially.

In the other direction let us proceed by reductio ad absurdum by assuming that

Cη,ζ(Γ) is consistent and that there is not any nonempty subset C ⊆ B for which∨
C ` θ for all θ ∈ Cη,ζ(Γ). Thus, by Proposition 34 there would exist subsets

C1 ⊆ B and C2 ⊆ B, with C1

⋂
C2 = ∅, with

∨
C1 ∈ Cη,ζ(Γ) and

∨
C2 ∈ Cη,ζ(Γ),

contradicting the fact that Cη,ζ(Γ) is consistent. �

As an example of the above condition for consistency let us consider the case

when η = 0 and ζ > 0. We have that C0,ζ(Γ) = {θ ∈ SL| ` θ}. Notice that the

condition for consistency stated in Proposition 35 is satisfied (take any C ⊆ B).
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Corollary 36 Cη,ζ(Γ) is consistent if and only if⋂
{C ⊆ B| FΓ,

∨
C(η) ≥ ζ}

is not empty.

Proposition 37 We can always find η and ζ for which Cη,ζ(Γ) is consistent.

Proof. Take η = mc(Γ) and ζ = 1. Notice that Proposition 35 is satisfied here

by setting

C = {β ∈ B| ∃w, w(β) > 0 and w(Γ) = η}.

�

Proposition 38 Let ζ∗ = min{FΓ,¬β(η)| β ∈ B}. The set Cη,ζ(Γ) is consistent

if and only if ζ > ζ∗.

Proof. Let us proceed by reductio ad absurdum by assuming that Cη,ζ(Γ) is

consistent and that ζ ≤ ζ∗. Then

{
∨

(B − {βi})| 1 ≤ i ≤ m} ⊆ Cη,ζ(Γ).

But {
∨

(B−{βi})| 1 ≤ i ≤ m} is inconsistent and, therefore, so is Cη,ζ(Γ), which

contradicts the assumption we started with.

Let us now assume that ζ > ζ∗ and that θ ∈ Cη,ζ(Γ). Let β be the sentence

in B such that ζ∗ = FΓ,¬β(η). Thus it has to be the case that β ` θ. To see this

notice that if β 0 θ then, by Proposition 34, there would exist C ⊆ B − {β} such

that
∨
C ` θ and FΓ,

∨
C(η) ≥ ζ > ζ∗. But that contradicts the assumption that

ζ∗ = FΓ,¬β(η). This completes the proof. �

In what follows we will focus our attention on the consequence relation mc(Γ).1

and Cmc(Γ),1(Γ) –which is consistent and most of the times can be worked out

easily from any set of sentences Γ, as we shall see in the comparisons that follow.

Notice that, for Γ consistent, we have mc(Γ) = 1 and thus

Γ1 .1 θ ⇐⇒ Γ ` θ.

We can compare mc(Γ).1 in terms of consistency with `Free, `∀, `∃ and `Lex.
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We first show that mc(Γ).1 is not generally comparable with `∀. That is to say,

it is not the case that, for Γ ⊆ SL, Cmc(Γ),1(Γ) ⊆ C∀(Γ) or C∀(Γ) ⊆ Cmc(Γ),1(Γ).

To see this consider

Γ = {φ1, φ2, φ3, φ4, φ5, φ6}

with

φ1 = α2 ∨ α4,

φ2 = α3 ∨ α5,

φ3 = α1 ∨ α2 ∨ α4,

φ4 = α1 ∨ α3 ∨ α5,

φ5 = α3 ∨ α4 ∨ α5,

φ6 = α1 ∨ α2 ∨ α4 ∨ α5

and α1, α2, α3, α4, α5 ∈ AtL.

Notice that mc(Γ) = 1
2

and that the maximal consistent subsets of Γ are

{φ3, φ4, φ6}, {φ1, φ3, φ5, φ6} and {φ2, φ4, φ5, φ6}.
We then have what follows:

Cmc(Γ),1(Γ) = {θ ∈ SL| α2 ∨ α3 ∨ α4 ∨ α5 ` θ}

and

C∀(Γ) = {θ ∈ SL| α1 ∨ α4 ∨ α5 ` θ}.

In this case then C∀(Γ) * Cmc(Γ),1(Γ) and Cmc(Γ),1(Γ) * C∀(Γ).

Thus we have that both `∀ and mc(Γ).1 yield consistent sets of inferences but

they are not comparable in the terms presented above.

Notice that for the above example we have four minimally inconsistent subsets

of Γ: {φ1, φ2}, {φ1, φ4}, {φ2, φ3} and {φ3, φ4, φ5}. The sentence φ6 is not in any

of these subsets. Thus we have that

CFree(Γ) = {θ ∈ SL| α1 ∨ α2 ∨ α4 ∨ α5 ` θ}.

Therefore, CFree(Γ) and Cmc(Γ),1(Γ) are not comparable either.

We may wonder if such a comparison is possible between `Lex and mc(Γ).1. The

answer is negative. It is not in general the case that, given Γ ⊆ SL, Cmc(Γ),1(Γ) ⊆
CLex(Γ) or CLex(Γ) ⊆ Cmc(Γ),1(Γ).
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To show this let us set

Γ = {φ1, φ2, φ3, φ4, φ5, φ6}

with

φ1 = α2,

φ2 = α3,

φ3 = α4,

φ4 = α1 ∨ α2,

φ5 = α1 ∨ α3,

φ6 = α1 ∨ α4

and α1, α2, α3, α4, α5, α6 ∈ AtL.

Notice that mc(Γ) = 1
3

and the largest consistent subset of Γ is {φ4, φ5, φ6}.
We then have what follows:

Cmc(Γ),1(Γ) = {θ ∈ SL| α2 ∨ α3 ∨ α4 ` θ}

and

CLex(Γ) = {θ ∈ SL| α1 ` θ}.

Clearly, CLex(Γ) * Cmc(Γ),1(Γ) and Cmc(Γ),1(Γ) * CLex(Γ).

Proposition 39 Let Γ ⊆ SL. Cmc(Γ),1(Γ) ⊆ C∃(Γ).

Proof. Let

C = {β ∈ B| ∃w, w(β) > 0 and w(Γ) = η}.

As seen previously

Cmc(Γ),1 = {θ |
∨
C ` θ}.

Consider β ∈ C and assume that there is no ∆ ∈ MC(Γ) such that ∆ ` β.

Let Φ = {φi1 , ..., φir} be the set of sentences in Γ logically implied by β. We can

extend Φ to a maximal consistent subset of Γ, say Φ∗. Clearly the conjunction

given by the sentences in Φ∗ and the negation of the sentences in Γ− Φ∗ will be

a sentence implied by Φ∗ in C. �
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4.2 `MC and others

Schotch and Jennings define an inference relation in terms of coherence in

connection with the function c defined in Chapter 2.

Let Γ ⊆ SL and θ ∈ SL.

Definition 40 We say that a collection Cm = {∆1, ...,∆m} of consistent subsets

of Γ is an m-cover of Γ if and only if ∪mi=1∆i = Γ.

For the next definition let us assume that c(Γ) = m.

Definition 41 We say that Γ forces θ (denoted Γ[` θ) if and only if for every

m-cover Cm = {∆1, ...,∆m} of Γ there is some i ∈ {1, ...,m} such that ∆i ` θ.

We will denote the set of consequences of Γ under the relation [` by CSJ(Γ).

The relation [` possesses some desirable classical properties (the classical

structural rules):

1. Reflexivity: If φ ∈ Γ then Γ[` φ.

2. Monotonicity*: For c(Γ ∪∆) = c(Γ), if Γ[` φ then Γ ∪∆[` φ.

3. Transitivity: If Γ ∪ {φ}[` θ and Γ[` φ then Γ[` θ.

According to Schotch and Jennings this fact makes [` the most suitable con-

sequence relation among its competitors. Consistency of CSJ(Γ) was not pursued

and, in general, CSJ(Γ) is not consistent. In fact, CSJ(Γ) will be consistent only

if Γ is since, by reflexivity, we will have that Γ ⊂ CSJ(Γ).

We can define a similar consequence relation by appealing to the notion of

η-coherence presented in Chapter 2 for which the classical structural rules (with

some restrictions) will also hold.

For the next definition, lemma and propositions let MC(Γ) = p
q
. 2

Definition 42 Γ `MC θ if and only if for each collection of copies of consistent

subsets of Γ of the form A = {∆1, ...,∆tq} yielding MC(Γ) there exist tp copies

classically entailing θ, where t is a positive integer.

2Recall that MC(Γ) is the maximal coherence of Γ, which is a rational value, and that
MC(Γ) = mc(Γ), see Chapter 2.

For simplicity we can assume that p
q is irreducible.
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Lemma 43 If Γ `MC θ then MC(Γ) = MC(Γ ∪ {θ}).

Proof. Let us assume that Γ `MC θ. That MC(Γ) ≥MC(Γ ∪ {θ}) is clear.

Let A = {∆1, ...,∆tq} be a collection of copies of consistent subsets of Γ

yielding MC(Γ), where t is a positive integer. We can define A∗ = {∆∗1, ...,∆∗tq},
a collection of copies of consistent subsets of Γ ∪ {θ}, where ∆∗i = ∆i ∪ {θ} if

∆i ` θ and ∆∗i = ∆i if ∆i 0 θ. Notice that, since Γ `MC θ, θ will belong to

more than tp copies of subsets of Γ ∪ {θ} in A∗. Thus we can conclude that

MC(Γ ∪ {θ}) = MC(Γ). �

The next proposition states that the classical structural rules (with some

restrictions) hold for `MC .

Proposition 44 The following rules are sound for `MC:

1. Reflexivity: If φ ∈ Γ then Γ `MC φ.

2. Monotonicity*: For MC(Γ∪∆) = MC(Γ), if Γ `MC φ then Γ∪∆ `MC φ.

3. Transitivity: If Γ ∪ {φ} `MC θ and Γ `MC φ then Γ `MC θ.

Proof. That `MC is reflexive and monotone in the terms stated above is clear.

Let us prove transitivity.

Let us assume that Γ ∪ {φ} `MC θ and Γ `MC φ. By Lemma 43 we know

that MC(Γ) = MC(Γ ∪ {φ}). Let us proceed by reductio ad absurdum by as-

suming that Γ 0MC θ. In this case there has to exist a collection of copies of

consistent subsets of Γ of the form A = {∆1, ...,∆tq}, for some positive integer t,

yielding MC(Γ) and containing less than tp copies of subsets classically implying

θ. Notice that, since Γ `MC φ, A will contain at least tp copies of subsets of Γ

classically entailing φ. Let us now define A∗ = {∆∗1, ...,∆∗tq}, a collection of copies

of consistent subsets of Γ ∪ {φ}, where ∆∗i = ∆i ∪ {φ} if ∆i ` φ and ∆∗i = ∆i

if, on the contrary, ∆i 0 φ. A∗ yields MC(Γ ∪ {φ}) but it contains less than

tp copies of subsets of Γ ∪ {φ} classically entailing θ, contradicting the fact that

Γ∪{φ} `MC θ. Therefore it has to be the case that if Γ∪{φ} `MC θ and Γ `MC φ

then Γ `MC θ �

Proposition 45 Γ `MC θ if and only if Γmc(Γ) .mc(Γ) θ.
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Proof. Let us proceed by reductio ad absurdum to prove the right implication. Let

us assume that Γ `MC θ and that Γmc(Γ) 7mc(Γ) θ. Thus there exists a probability

function w on L such that w(Γ) = mc(Γ) and w(θ) < mc(Γ). Suppose that

C = {αk1 , ..., αkr} ⊆ AtL is the set of atoms that are given probability greater

than zero by w and that C∗ ⊂ C is the set of atoms among them that logically

imply θ. Let us suppose that, for each i ∈ {1, ..., r}, w(αki) = pi
qi
> 0 for some

positive integers pi and qi.
3 Let Q be the least common multiple of the qi and p∗i

be such that pi
qi

=
p∗i
Q

(and p
q

= P
Q

). Let us set nowA = {∆1
1, ...∆

1
p∗1
, ...,∆r

1, ...,∆
r
p∗r
},

where ∆i
j = {φ ∈ Γ| αki ` φ} for each j ∈ {1, ..., p∗i }. Thus in such collection

there have to be at least P copies of each sentence of Γ and thus A yields MC(Γ).

On the other hand, A will contain less than P copies of subsets of Γ classically

entailing θ, which contradicts the assumption we started with. Therefore, if

Γ `MC θ then Γmc(Γ) .mc(Γ) θ.

Let us proceed again by reductio ad absurdum to prove the left implication.

So let us assume that Γmc(Γ) .mc(Γ) θ but that Γ 0MC θ. In this case there has

to exist a collection of consistent subsets of Γ of the form A = {∆1, ...,∆tq} for

some positive integer t that yields MC(Γ) but that contains less than tp copies

of subsets classically implying θ. Let A∗ ⊂ A be the collection of subsets in

A that classically imply θ. Since the subsets ∆i are consistent we can find a

collection of copies of atoms in AtL, {αk1 , ..., αktq} (possibly with repeats), such

that αki `
∧

∆i. For ∆ /∈ A∗ we will choose α ∈ AtL such that α 0 θ. If ∆ ∈ A∗

then any atom α classically implying ∆ will do. Now let w be a probability

function that assigns to each atom α ∈ AtL probability r
tq

, where r is the number

of copies of α in the collection {αk1 , ..., αktq}. Thus w(Γ) = p
q

and w(θ) < p
q
,

since the number of copies of atoms in {αk1 , ..., αktq} that classically imply θ is

less than tp. This contradicts our initial assumption. Therefore, if Γmc(Γ) .mc(Γ) θ

then Γ `MC θ. �

3We can assume that the probability given to the atoms αk1 , ..., αkr by w is rational by
substructureness. As in Lemma 5, if the statement

’There exists a probability function w such that w(Γ) = λ and w(θ) < λ’

is true in the structure 〈R,+, <,=, 0, 1, λ〉 then so is in 〈Q,+, <,=, 0, 1, λ〉 by substructureness.
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4.3 Dempster-Shafer belief functions

In this section we adopt Dempster-Shafer belief functions to measure degrees

of belief and redefine our consequence relation η.ζ in terms of such belief func-

tions.4

For what follows let P∗(AtL) = P(AtL)−{∅}, where P(AtL) is the power set

of AtL.

Definition 46 A probability mass assignment is a map µ : P∗(AtL) −→ [0, 1].

Definition 47 We say that a map from SL to [0, 1] is a Dempster-Shafer belief

function (DS-belief function for short) if there exists a probability mass assign-

ment µ for which

∑
S∈P∗(AtL)

µ(S) = 1

and, for φ ∈ SL,

w(φ) =
∑
∅6=S⊆Sφ

µ(S)

We will denote this function by wµ.

Notice that a probability function can be regarded as a DS-belief function.

To see this assume that w is a probability function. We can easily define a DS-

belief function wµ from w such that wµ(φ) = w(φ) for all φ ∈ SL by setting

µ({α}) = w(α) for all α ∈ AtL.

In this sense we will say that probability functions are DS-belief functions.

For what follows let Γ ⊆ SL and η ∈ [0, 1].

Proposition 48 Γ is η-consistent if and only if there exists a DS-belief function

wµ such that wµ(Γ) ≥ η.

Proof. Let us first assume that Γ is η-consistent. Then there exists a probability

function w such that w(Γ) ≥ η. We can define a DS-belief function wµ as

mentioned above: µ({α}) = w(α) for all α ∈ AtL. Thus wµ(Γ) ≥ η.

4See [7] for a good insight into Dempster-Shafer belief functions.
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Let us assume now that wµ is a DS-belief function such that wµ(Γ) ≥ η.

Suppose that µ(S) > 0 for all S ∈ {S1, ..., Sk} and that µ(S) = 0 for all S /∈
{S1, ..., Sk} (where Si ⊆ AtL for all i ∈ {1, ..., k}). For each i ∈ {1, ..., k} we can

choose an atom in Si and define a probability function w such that

w(α) =
∑
{µ(Si) |α is the chosen atom of Si}.

Then we will have that w(Γ) ≥ η. �

Corollary 49 Γ is maximally η-consistent if and only if there exists a DS-belief

function wµ such that wµ(Γ) ≥ η and there is no other DS-belief function wµ
′

such that wµ
′
(Γ) > η.

Definition 50 We say that Γ (η, ζ)-implies θ (denoted Γη ζ θ) if and only if,

for every DS-belief function wµ, if wµ(Γ) ≥ η then wµ(θ) ≥ ζ.

We now prove the equivalence between η.ζ and η ζ .

Proposition 51 Γη ζ θ if and only if Γη .ζ θ.

Proof. Let us proceed by reductio ad absurdum by assuming that Γη ζ θ and

that Γη 7ζ θ. Then there exists a probability function w such that w(Γ) ≥ η

and w(θ) < ζ. But this leads to a contradiction since, as we have seen above,

probability functions are DS-belief functions.

Let us assume now that Γη .ζ θ and that there exists a DS-belief function

wµ such that wµ(Γ) ≥ η and wµ(θ) < ζ. Suppose that µ(S) > 0 for all S ∈
{S1, ..., Sk} and that µ(S) = 0 for S /∈ {S1, ..., Sk} (where Si ⊆ AtL for all

i ∈ {1, ..., k}). Let us choose an atom α for each Si (any atom in Si if
∨
Si ` θ

and an atom not implying θ in Si if
∨
Si 0 θ. If Si is singleton we then take the

only atom it contains) and define a probability function w as follows:

w(α) =
∑
{µ(Si) |α is the chosen atom of Si}.

Thus w is such that w(Γ) ≥ η and w(θ) < ζ, which contradicts the initial

assumption. �
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4.4 Possibility theory

Let us consider now possibility functions (see [8] or [9] for an introduction to

possibility theory).

Definition 52 A map w : SL −→ [0, 1] is said to be a possibility function if and

only if for all φ, θ ∈ SL the following conditions hold:

1. If ` θ then w(θ) = 1 and w(¬θ) = 0.

2. If ` φ↔ θ then w(φ) = w(θ).

3. w(φ ∨ θ) = max(w(φ), w(θ)).

It follows from the definition that possibility functions can be characterized

by the values they assign to the atoms of L. Thus they can be identified with

2l-coordinate vectors in CL:

CL = {(x1, ..., x2l) ∈ R2l | xi ≥ 0,maxi{xi} = 1}.

Throughout let Γ = {φ1, ..., φk} ⊆ SL, θ ∈ SL and η, ζ ∈ [0, 1].

Definition 53 We say that Γ (η, ζ)-entails θ (denoted Γη |=ζ θ) if and only if,

for all possibility functions w, if w(Γ) ≥ η then w(θ) ≥ ζ.

Definition 54 Let PΓ,θ : [0, 1] −→ [0, 1] be defined by

PΓ,θ(η) = sup{ζ |Γη |=ζ θ}.

Proposition 55 The function PΓ,θ is of one of the following forms:

1. PΓ,θ(x) = 0 for all x ∈ [0, 1].

2. PΓ,θ(x) = 1 for all x ∈ [0, 1].

3. PΓ,θ(x) = x for all x ∈ [0, 1].

Proof. If θ is a tautology then clearly PΓ,θ(x) = 1 for all x ∈ [0, 1]. Thus, let us

assume that θ is not a tautology. We will distinguish two cases:



CHAPTER 4. OTHER APPROACHES 56

1. There is no sentence in Γ which classically implies θ.

This means that for each φi ∈ Γ, i ∈ {1, ..., k}, there exists an atom αφi ∈
Sφi such that αφi 0 θ. We can define a possibility function w that assigns

value 1 to every such atom. This way, w(φ) = 1 for all φ ∈ Γ and w(θ) = 0.

Thus, PΓ,θ(x) = 0 for all x ∈ [0, 1].

2. There exists φ ∈ Γ such that φ ` θ.

Let w be a possibility function for which w(Γ) ≥ η. Then clearly w(θ) ≥ η.

Further, we can define a possibility function w∗ such that w∗(Γ) ≥ η and

w∗(θ) = η by setting w∗(α) = η for all α ∈ Sθ and w∗(α) = 1 for all α ∈ S¬θ.
Thus, PΓ,θ(x) = x for all x ∈ [0, 1].

�

We can easily find Γ ⊆ SL and θ ∈ SL for which the function PΓ,θ is of any of

the three forms above (the proof of the preceding proposition shows how to find

them).

Corollary 56 Let η ∈ (0, 1].

1. If Γη |=ζ θ for 0 < ζ < η then Γη |=η θ.

2. If Γη |=ζ θ for 0 < η < ζ then Γζ |=ζ θ.

Corollary 57 Let η ∈ (0, 1]. Γη |=η θ if and only if there exists φ ∈ Γ such that

φ ` θ.



Chapter 5

Multiple thresholds

In Chapter 3 we introduced the consequence relation η.ζ , where η was re-

garded as a lower bound probability threshold for each sentence in the set of

premises. Each sentence was, in that sense, given the same preference and that

seemed to be well justified. However, at least in some situations, it seems reason-

able to treat sentences differently and assign them distinct levels of preference,

which in our settings translates into the possibility that distinct sentences in our

knowledge base have distinct probability thresholds. This is precisely what we

explore in this chapter.1

The notation will be slightly different to that of the previous chapters so we

start by introducing some notation.

5.1 Notation and remarks

In this section our primitive sentences will be denoted by expressions of the

form f ηθ –with the intended meaning ’the probability of θ is at least η’ where

θ ∈ SL and η ∈ [0, 1]. Let FL be the set of such sentences (that is to say,

FL = { f ηθ | θ ∈ SL and η ∈ [0, 1]} ) and SFL the set of boolean combinations of

our primitive sentences in FL (for simplicity we will just consider the connectives

∧, ∨ and ¬). We will use letters g, h . . . (possibly with subscripts) for elements

of SFL.

Let w be a probability function and g ∈ SFL. We use the expression w . g

1There are a number of formal proof theories in some way similar to the one that we present
in this chapter (see for example [10], [11], [12], [17], [20], [22], [23], [31], [32], [33] or [36]). The
approach in this chapter is particularly close to that in [17] and [22].

57
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to mean that w satisfies g. We define satisfiability for sentences in SFL in the

obvious way:

w . f ηφ ⇐⇒ w(φ) ≥ η

w . ¬g ⇐⇒ w 7 g

w . g ∧ h ⇐⇒ w . g and w . h

w . g ∨ h ⇐⇒ w . g or w . h.

Throughout let Γ = {g1, ..., gn} ⊂ SFL and h ∈ SFL.

Definition 58 We say that Γ implies h (denoted Γ . h) if and only if, for all

probability functions w on L, if w . g for all g ∈ Γ then w . h.

Sometimes we will use the abbreviation w.Γ to mean that w.g for all g ∈ Γ.

5.2 The consequence relation .

Throughout this section let Φ = {f η1

φ1
, ..., f ηrφr} ⊂ FL and f ζθ ∈ FL.

The next proposition states some properties of the consequence relation . for

simple sets of premises like Φ.

Proposition 59 We have what follows:

(1) ∅ . f 0
θ for any θ ∈ SL.

(2) If θ ` φ then f ηθ . f
η
φ .

(3) ∅ . f 1
θ ⇐⇒ ` θ.

(4) If 0 ≤ ζ ≤ η ≤ 1 then f ηθ . f
ζ
θ .

(5) If Φ . f ζθ then Φ ∪ Φ′ . f ζθ .

(6) If Φi . f
ηi
φi

for each f ηiφi ∈ Φ and Φ . f ζφ then
⋃
i Φi . f

ζ
φ.

Proof. All these properties follow immediately from the definition of .. �

Next we state a closure property of the probability thresholds in ..
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Proposition 60 Suppose that {ηni } is an increasing sequence with limit ηi for

i ∈ {1, ..., r}, {ζn} a sequence with limit ζ and

f
ηn1
φ1
, ..., f

ηnr
φr
. f ζ

n

φ

for all n. Then

f η1

φ1
, ..., f ηrφr . f

ζ
φ .

Proof. Let us proceed by reductio ad absurdum and assume that

f η1

φ1
, ..., f ηrφr 7 f ζφ .

Thus there exists a probability function w such that w(φi) ≥ ηi for all i ∈ {1, ..., r}
and w(φ) < ζ. But then, for some n, w(φ) < ζn and, since ηni ≤ ηi,

f
ηn1
φ1
, . . . , f

ηnr
φr

7 f ζ
n

φ ,

which contradicts the assumption above. �

For what follows let ~φ = (φ1, . . . , φr) ∈ SLr and ~η = (η1, . . . , ηr) ∈ [0, 1]r.

Definition 61 We say that ~φ is ~η-consistent if there exists a probability function

w for which w(φi) ≥ ηi for all i ∈ {1, ..., r}.

Let C(~φ) denote the set of ~η ∈ [0, 1]r for which ~φ is ~η-consistent.

Clearly if ~η ∈ C(~φ) and λi ≤ ηi for i ∈ {1, ..., r} then ~λ ∈ C(~φ).

A somewhat more interesting closure property is given by the next proposition.

Proposition 62 C(~φ) is a closed subset of [0, 1]r.

Proof. Let M~φ be the matrix representing the vector ~φ with respect to the atoms

in AtL.2

Let {~ηn} be a sequence in C(~φ) that converges to ~η. Then there must be

probability functions wn such that wn(φi) ≥ ηni for all i ∈ {1, ..., r} and all n. Let

~xn ∈ D2l be the vector representation of wn and consider the sequence {~xn}.
We need to prove now that there exists a probability function ~x ∈ D2l such

that (M~φ (~x)T )
i ≥ ηi for all i ∈ {1, ..., r}.

2Such matrix is analogous to those defined in the introduction for sets of sentences in SL.
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We can take a convergent subsequence {~x1
nk
} of the first coordinates of {~xn}.

We know such a convergent subsequence needs to exist and converge in the in-

terval [0, 1] by compactness. We can proceed in the same way for the other

coordinates.

The final subsequence, {~x2l

nk
}, will have as a limit a probability function ~x ∈

D2l such that (M~φ (~x)T )
i ≥ ηi for all i ∈ {1, ..., r}. �

5.3 The function F~φ,θ

We define the function F~φ,θ as follows:

F~φ,θ(~η) = sup{ ζ | f η1

φ1
, ..., f ηrφr . f

ζ
θ }.

Proposition 63 F~φ,θ is increasing on [0, 1]r.

Proof. It follows immediately from the definition of .. �

The next proposition shows that F~φ,θ measures the guaranteed minimum prob-

ability that θ can assume given the stated, attainable, lower bounds on the prob-

abilities of the φi.

Proposition 64 If ~φ is ~λ-consistent then there is a probability function w such

that w(φj) ≥ λj for all j ∈ {1, ..., r} and w(θ) = F~φ,θ(
~λ).

Proof. Let M~φ be the matrix representing the vector ~φ with respect to the atoms

of L and ~θ the sentence θ.

We can define a decreasing sequence {ζn} whose limit is ζ such that for all

n ∈ N there exists a probability function wn with wn(θ) = ζn and wn(φi) ≥ λi for

all i ∈ {1, ..., r}. We can represent {wn} by a sequence of vectors { ~xn} such that
~θ · ~xn = ζn for all n ∈ N and (M~φ( ~xn)T )i ≥ λi for all i ∈ {1, ..., r}.

We need to prove now that there exists a probability function ~x ∈ D2l such

that ~θ · ~x = ζ and (M~φ (~x)T )
i ≥ λi for all i ∈ {1, ..., r}.

We can take a convergent subsequence {~x1
nk
} in the first coordinates of {~xn}.

We know such a convergent subsequence needs to exist and converge in the in-

terval [0, 1] by compactness. We can proceed in the same way for the other

coordinates.
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The final subsequence, {~x2l

nk
}, will have as a limit a probability function ~x ∈

D2l such that (M~φ (~x)T )
i ≥ λi for all i ∈ {1, ..., r} and ~θ · ~x = ζ. �

It is clear that as ~λn moves upwards to a limit ~λ at which ~φ is not consistent

then the value of F~φ,θ(
~λn) suddenly jumps to 1.

Proposition 65 F~φ,θ is continuous on C(~φ).

Proof.3 Let {~ηn} ⊆ C(~φ) converge to ~η. We show that {F~φ,θ(~ηn)} converges to

F~φ,θ(~η).

Let wn(φi) ≥ ηni for all i ∈ {1, ..., r} and

wn(θ) = F~φ,θ(~η
n).

By taking a subsequence if necessary we may assume that {wn} converges to

w∞ so it is enough to show that

w∞(θ) = F~φ,θ(~η).

Suppose not. In that case

w∞(θ) > F~φ,θ(~η) = w(θ)

where w is chosen such that w(φi) ≥ ηi for all i ∈ {1, ..., r} and w(θ) = F~φ,θ(~η).

Let ε > 0 be sufficiently small that for v = (1− ε)w + εw∞, v(θ) < wn(θ) + ε

for all n eventually. Then for any atom α, if v(α) = 0 then w(α) = w∞(α) = 0.

Now let n be large and consider u = v + wn − w∞. This is a probability

function since for any α if v(α) = 0 then wn(α) − w∞(α) = wn(α) ≥ 0 whilst if

v(α) > 0 then, since n is large,

|wn(α)− w∞(α)| < v(α)

so again u(α) ≥ 0.

Also if one of w∞(φi), w(φi) is strictly larger than ηi for i ∈ {1, ..., r} then for

some δ > 0 we will have that v(φi) > ηi + δ so since n is large

u(φi) = v(φi) + wn(φi)− w∞(φi) ≥ ηi +
δ

2
≥ ηni .

3This proof is due to Jeff Paris.
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On the other hand if w∞(φi) = w(φi) = ηi then

u(φi) = v(φi) + wn(φi)− w∞(φi) = wn(φi) ≥ ηni .

But this contradicts the definition of wn since

u(θ) = (1− ε)w(θ) + εw∞(θ) + (wn(θ)− w∞(θ))

which is less than wn(θ). �

Together with the previous propositions our next result provides a clear pic-

ture of the shape of the graph of F~φ,θ.

Proposition 66 On C(~φ) the function F~φ,θ is made up of a finite collection of

linear polynomials of the form q0 +
∑r

i=1 qixi for qi ∈ Q. That is to say, for

~x ∈ C(~φ),

F~φ,θ(~x) =


q1

0 + q1
1x1 + . . .+ q1

rxr if ~x ∈ C1

. . .

qn0 + qn1x1 + . . .+ qnr xr if ~x ∈ Cn

where the Ci are closed convex sets with union C(~φ) each defined as the solutions

of a finite set of linear inequalities

a0 + a1x1 + a2x2 + . . .+ arxr ≥ b0 + b1x1 + b2x2 + . . .+ brxr

with coefficients in Q.

Proof. Let R = 〈R,+, <,=, 0, 1〉. The set

{(x1, . . . , xr, y) ∈ Rr+1 | y = F~φ,θ(x1, . . . , xr)}

is R-definable, so, since R is an elementary extension of the structure

Q = 〈Q,+, <,=, 0, 1〉,

it is Q-definable too.

The theory of R has quantifier elimination (see for example [29]). Therefore

the set

{(x1, . . . , xr, y) ∈ Rr+1 | y = F~φ,θ(x1, . . . , xr)}
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is given by a finite boolean combination (which reduces to a finite union of inter-

sections by the complement and distributive laws for sets) of sets of the form

{(x1, . . . , xr, y) ∈ Rr+1 |my <
r∑
i=1

nixi + k}

and

{ (x1, . . . , xr, y) ∈ Rr+1 |my =
r∑
i=1

nixi + k},

for some ni,m, k ∈ Z.

Notice that each intersection of sets of such form is convex so, since F~φ,θ is

a function, such an intersection has to be a polynomial of the above mentioned

form (with coefficients in Q) and sets of constraints Ci (with coefficients in Q
too) in the form of finite conjunctions of linear equalities

c0 + c1x1 + . . .+ crxr = 0 (5.1)

and strict inequalities

a0 + a1x1 + . . .+ arxr > b0 + b1x1 + . . .+ brxr.

Clearly we may assume the Ci are satisfiable in which case, being defined by

linear constraints, their closure is given by the corresponding equalities (5.1) and

inequalities

a0 + a1x1 + . . .+ arxr ≥ b0 + b1x1 + . . .+ brxr.

Furthermore since F~φ,θ is continuous it still takes the required linear polynomial

form on these closures. �

We now give the main result of this section, an equivalent of the consequence

relation . (similar in flavour to that given in [22]) which captures it entirely within

classical propositional calculus.

Theorem 67 For φ1, . . . , φr, θ ∈ SL and η1, ..., ηr, ζ ∈ (0, 1],

f η1

φ1
, ..., f ηrφr . f

ζ
θ

if and only if there exist a multiset Ψ consisting of some N j copies of φj for
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j ∈ {1, ..., r} and Z, T ∈ N with T < Z such that,

T (1− ζ) ≤
r∑
j=1

ηjN
j − ζZ + 1,

∨
S⊆{1,...,N}
|S|=Z

∧
j∈S

χj ` ⊥

and ∨
S⊆{1,...,N}
|S|=T

∧
j∈S

χj ` θ.

Proof. The derivation follows a similar pattern to that of η.ζ in Chapter 3.

Let us take ~φ = (φ1, . . . , φr) ∈ SLr and θ ∈ SL. For the time being we assume

that θ is not a tautology.

We first consider the case where η1, ..., ηr, ζ ∈ (0, 1] ∩ Q, say 0 < ηi = pi
qi

, for

i ∈ {1, ..., r}, ζ = c
d
, for pi, qi, c, d ∈ N, and assume that

f η1

φ1
, . . . , f ηrφr . f

ζ
θ . (5.2)

Let B = {β1, ..., βm}.

Let ~φj be the m-coordinate vector with ith coordinate 1 if βi ` φj and 0

otherwise and ~θ the m-coordinate vector with ith coordinate 1 if βi ` θ and 0

otherwise.

We have what follows:

For all ~x ∈ Dm, if ~φj · ~x ≥ pj
qj

for all j ∈ {1, ..., r} then ~θ · ~x ≥ c
d
.

Now let ~pi
qi

and ~c
d

be m-coordinate vectors with each coordinate pi
qi

for the first

and c
d

for the latter and define

~φ
j

= ~φj − ~pj
qj
,

~θ = ~θ − ~c
d
,

for j ∈ {1, ..., r}.

Thus we have:
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For all ~x ∈ Dm, if ~φ
j
· ~x ≥ 0 for all j ∈ {1, ..., r} then ~θ · ~x ≥ 0.

From this it follows that ~θ has to be in the cone in Qm given by{ r∑
j=1

aj~φj +
m∑
i=1

bi~ei | 0 ≤ aj, bi ∈ Q
}

where ~ei is the m-vector with ith coordinate 1 and 0’s elsewhere, say

~θ =
r∑
j=1

aj~φj +
m∑
i=1

bi~ei

with 0 ≤ aj, bi ∈ Q.

Let aj =
uj
vj

and define M =
∏

j vj, Nj = Maj, Q =
∏

j qj and Qj = Q
qj

.

Removing the rightmost summation and multiplying both sides by MQd gives

the inequality

MQ(d~θ − c~1) ≥
r∑
j=1

dNjQj(qj~φj −~1pj). (5.3)

Notice that if (5.3) holds for some natural numbers M and Nj then (5.2) holds

too.

From (5.3) we obtain[
d

r∑
j=1

NjQjpj −MQc

]
~1 ≥ dQ(

r∑
i=1

Nj
~φj −M~θ).

Equivalently[
d

r∑
i=1

NjQjpj +MQ(d− c)

]
~1 ≥ dQ(

r∑
j=1

Nj
~φj +M(~1− ~θ)).

Let χ1, . . . , χN consist of N j = dQNj copies of each φj for j ∈ {1, ..., r}, so

N =
∑

j N
j =

∑
j dQNj.

For βk 0 θ (notice that there is at least one such k since θ is not a tautology)

we have the following inequality for the kth coordinate:

r∑
j=1

pj
qj
N j − cMQ ≥ dQ

r∑
j=1

Njφ
k
j
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where φkj is the kth coordinate of ~φj. Thus we have that:

∨
S

∧
i∈S

χi ` θ

where the disjunction is over S ⊆ {1, ..., N} with

|S| >
r∑
j=1

pj
qj
N j − cMQ

(notice that
∑r

j=1
pj
qj
N j − cMQ will have to be an integer greater than or equal

to zero).

Similarly, for βk ` θ we will have the following inequality:

r∑
j=1

pj
qj
N j + (d− c)MQ ≥ dQ

r∑
j=1

Njφ
k
j ,

so

∨
S

∧
i∈S

χi ` ⊥

where the disjunction is over S ⊆ {1, ..., N} with

|S| >
r∑
j=1

pj
qj
N j + (d− c)MQ.

Now let

Z = 1 +
r∑
j=1

pj
qj
N j + (d− c)MQ

T = 1 +
r∑
j=1

pj
qj
N j − cMQ

giving

T (1− ζ) =
r∑
j=1

ηjN
j + 1− ζZ

∨
S⊆{1,...,N}
|S|=Z

∧
i∈S

χi ` ⊥ (5.4)
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and ∨
S⊆{1,...,N}
|S|=T

∧
i∈S

χi ` θ. (5.5)

Conversely suppose that for some Z, T ∈ N and χ1, ..., χN consisting of N j

copies of φj for j ∈ {1, ..., r} the above conditions (5.4), (5.5) hold and

T (1− ζ) ≤
r∑
j=1

ηjN
j − ζZ + 1 (5.6)

with 1 ≤ T < Z.

Then for any atom α ∈ AtL, if α ` ¬θ then for at most T − 1 j’s can we have

that α ` χj. If α ` θ then for at most Z − 1 j’s can we have that α ` ψj. Hence,

adopting the previous vector notation (now with real atoms instead of the β’s)

we have that

N∑
i=1

~χi ≤ (T − 1)~1 + (Z − T )~θ.

Now let us suppose that ~x ∈ D2l and that ~φj · ~x ≥ ηj for j ∈ {1, ..., r}. Then

~θ · ~x ≥
∑r

j=1 ηjN
j − T + 1

Z − T
.

Notice that the right expression is at least ζ if

T (1− ζ) ≤
r∑
j=1

ηjN
j + 1− ζZ

which it is. Thus ~θ · ~x ≥ ζ and the result follows.

Summarizing, if (5.4), (5.5) and (5.6) hold then

f η1
χ1
, ..., f η1

χN1
, ..., f ηrχ∑r−1

j=1
Nj+1

, ..., f ηrχNr . f
ζ
θ

and by Proposition 59 (5) (if necessary) we have

f η1

φ1
, ..., f ηrφr . f

ζ
θ .
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Conversely if

f η1

φ1
, ..., f ηrφr . f

ζ
θ

then there are sentences

χ1, ..., χN ∈ {φ1, ..., φr}

(possibly with repeats) such that for some Z and T conditions (5.4), (5.5) and

(5.6) hold.

Let us suppose now that θ is a tautology.

From left to right we can see that the result follows by taking values T = N = 0

and Z = 1. From right to left, if the right-hand side of the equivalence holds with

T = 0 then θ must be a tautology.

This completes the proof in the case where the ηi and ζ are rational. Suppose

now that not all the ηi and/or ζ are rational. Notice that we only need to consider

the case when ζ = F~φ,θ(~η) since, if F~φ,θ(~η) = ζ ′ > ζ and we have a collection of

sentences

χ1, ..., χN1 , ..., χ∑r−1
j=1 N

j+1, ..., χN ∈ {φ1, ..., φr}

(possibly with repeats) and Z, T for which conditions (5.4), (5.5) hold and

ζ ′ ≤
∑r

j=1 ηjN
j + 1− T

Z − T

with T < Z then, clearly, such a collection of sentences and Z and T will be such

that

ζ <

∑r
j=1 ηjN

j + 1− T
Z − T

.

So suppose first that

f η1

φ1
, ..., f ηrφr . f

ζ
θ .

Referring back to Proposition 66 we may assume that ~η ∈ C1 in the notation

of that proposition. Let ~s be the mean of the (finitely many) extreme points of

C1. Notice that such extreme points are all rational by Proposition 66 and that

~s ∈ C1.

By Proposition 66 F~φ,θ(~s) is rational so by the discussion above we know that
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there exist sentences

χ1, ..., χN ∈ {φ1, ..., φr},

and Z, T with T < Z for which conditions (5.4), (5.5) hold and

F~φ,θ(~s) ≤
∑r

j=1 sjN
j + 1− T

Z − T
.

In fact we must have equality here since otherwise we could increase the left

hand side whilst keeping ~s fixed, contradicting the maximality of F~φ,θ(~s). Hence

F~φ,θ(~x) =

∑r
j=1 xjN

j + 1− T
Z − T

(5.7)

when ~x = ~s.

By Proposition 66,

F~φ,θ(~x) = q0 +
r∑
j=1

xjq
j (5.8)

for ~x ∈ C1 and in fact the right hand side polynomials in (5.7), (5.8) must

actually be identically equal on C1. Otherwise, because ~s could not then be the

only (necessarily then extreme) point of C1, there would be a point ~u ∈ C1 close

to ~s at which

F~φ,θ(~u) = q0 +
r∑
j=1

ujq
j <

∑r
j=1 ujN

j + 1− T
Z − T

contradicting the already proved rational case.

Therefore, given the above equalities, we must have that

ζ =

∑r
j=1 ηjN

j + 1− T
Z − T

.

In the other direction, suppose that we have sentences

χ1, ..., χN ∈ {φ1, ..., φr},

Z and T for which conditions (5.4), (5.5) hold and

ζ ≤
∑r

j=1 ηjN
j + 1− T

Z − T
,
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with T < Z (where of course we are no longer assuming that ζ = F~φ,θ(~η)). If

~η /∈ C(~φ) then we trivially have the required conclusion that

f η1

φ1
, . . . , f ηrφr . f

ζ
θ .

So let us assume that ~η ∈ C(~φ). Then, by the proved rational case for rational

points, we will have ~p ∈ C(~φ) close to ~η and

q =

∑r
j=1 pjN

j + 1− T
Z − T

,

fp1

φ1
, . . . , f prφr . f

q
θ .

Hence

F~φ,θ(~p) ≥
∑r

j=1 pjN
j + 1− T

Z − T
and by continuity

F~φ,θ(~η) ≥
∑r

j=1 ηjN
j + 1− T

Z − T
≥ ζ,

giving the required conclusion that

f η1

φ1
, . . . , f ηrφr . f

ζ
θ .

When ζ and/or all the ηi are zero, for i ∈ {1, ..., r}, we have a trivial equivalent

version.

If only some of the ηi (not all) are zero then the equivalent version in classical

propositional calculus reduces trivially to the one above by only considering those

ηi that are non zero. �

5.4 A complete proof system for .

We now introduce the proof system  which we will shortly show is sound and

complete with respect to .. It consists of some complete and sound set of rules

and axioms for classical propositional logic4, say in a natural deduction format to

tie in with what follows, together with the following probability rules and axioms:

4Which we assume has rules which allow us to freely add to and remove repeats from the
left hand side of sequents.
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Fraction Rules:

Let {φ1, ..., φr} ⊆ SL and, for each i ∈ {1, ..., r}, let χk = φi for all

k ∈ {
i−1∑
j=1

N j + 1, ...,
i∑

j=1

N j}

(where N j is the number of copies of φj).∨
S⊆{1,...,N}
|S|=Z

∧
j∈S

χj ` ⊥

f η1
χ1
, ..., f η1

χN1
, ..., f ηrχ∑r−1

j=1
Nj+1

, ..., f ηrχN | f
ζ
ψ

where ∨
S⊆{1,...,N}
|S|=T

∧
j∈S

χj ` ψ

,

T (1− ζ) ≤
r∑
i=1

ηiN
i − ζZ + 1 and 0 ≤ T < Z.

Negation Replacement Axiom:

¬f ηφ | f
1−η
¬φ

Introduction Axiom:

| f 0
φ

Elimination Axiom:

f ηφ ∧ f
0
φ | f

η
φ

Tautology Axiom:

| f η>

We define Γ  g to hold if there is a formal proof of ∆ | g using these rules

and axioms for some ∆ ⊆ Γ; that is, if there is a finite sequence

∆1 | g1, ...,∆r | gr,
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with the ∆i finite, ∆r | gr = ∆ | g, and each ∆i | gi is either an axiom or follows

by one of the rules from previous sequents.

Theorem 68 Let Γ be a finite subset of SFL and g ∈ SFL. Then

Γ . g ⇐⇒ Γ  g.

Proof. That the rules and axioms are sound for these semantics is easy to check.5

In the other direction suppose that Γ . g. Appealing to the Disjunctive and

Conjunctive Normal Form Theorems, in order to prove that Γ  g it will be

enough to show that
m∨
i=1

ki∧
j=1

±f ηijφij


r∧
u=1

hu∨
v=1

±f ζuvθuv

whenever this holds with . in place of . From this we have that

ki∧
j=1

±f ηijφij
.

hu∨
v=1

±f ζuvθuv

for each i ∈ {1, ...,m} and u ∈ {1, ..., r} and again by appealing to the proposi-

tional calculus it will be enough to show this holds with  in place of ..

If every f ζuvθuv
here is negated and every f

ηij
φij

is not negated then we will have

that
ki∧
j=1

f
ηij
φij
∧

hu∧
v=1

f ζuvθuv
. f 1
⊥

and, assuming that all the ηij and ζuv are greater than zero, the required result

with  in place of . will follow by applying some Fraction Rule (if it were not

the case that all the ηij and ζuv be greater than zero then we should apply some

of the axioms above in a trivial way).

On the other hand if some f ζuvθuv
here is not negated (or some f

ηij
φij

is) we can

shuffle these literals across and leave ourselves to show something of the form

q∧
i=1

fγiψi ∧
d∧
i=1

¬f δiϕi  f
β
θ

5Notice that in the Negation Replacement Axiom, ¬fηφ | f
1−η
¬φ , we appear to lose some infor-

mation since the negation of fηφ amounts to w(φ) < η, equivalently w(¬φ) > 1− η and the rule
replaces this by w(¬φ) ≥ 1− η.
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where this holds with . in place of .

If
q∧
i=1

fγiψi ∧
d∧
i=1

¬f δiϕi

is not satisfiable then
q∧
i=1

fγiψi ∧
d−1∧
i=1

¬f δiϕi . f
δd
ϕd

and we can repeat the above argument (in a case with fewer literals). On the

other hand if this conjunction is satisfiable then Lemma 69 below tells us that

q∧
i=1

fγiψi ∧
d∧
i=1

f 1−δi
¬ϕi . fβθ

and, assuming that all the γi are greater than zero and all the δi less than one,

applications of some Fraction Rule and Negation Replacement Axioms give us

the required proof. �

Lemma 69 If
q∧
i=1

fγiψi ∧
d∧
i=1

¬f δiϕi . f
β
θ

and
q∧
i=1

fγiψi ∧
d∧
i=1

¬f δiϕi

is satisfiable then
q∧
i=1

fγiψi ∧
d∧
i=1

f 1−δi
¬ϕi . fβθ

Proof. Let us proceed by reductio ad absurdum assuming that there is some

probability function w1 such that w1(ψi) ≥ γi for i ∈ {1, ..., q} and w1(¬ϕi) ≥
1− δi for i ∈ {1, ..., d} but w1(θ) < β.

Let w2 be such that w2(ψi) ≥ γi for i ∈ {1, ..., q} and w2(¬ϕi) > 1− δi for i ∈
{1, ..., d}. The latter condition is equivalent to ¬(w2(ϕi) ≥ δi) for i ∈ {1, ..., d}.
Thus w2(θ) ≥ β.

Hence we could find a convex combination w∗ = (1− ε)w1 + εw2 (ε > 0) with

w∗(ψi) ≥ γi for i ∈ {1, ..., q} and w∗(¬ϕi) > 1 − δi for i ∈ {1, ..., d}. But then

w∗(θ) < β, which contradicts the assumption we started with. �
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It is easy to see that we cannot extend this to infinite Γ (in the forward

direction) since for example

{f 1− 1
n

p |n ∈ N} . f 1
p

but since this fails for any finite subset of the left hand side we cannot have

{f 1− 1
n

p |n ∈ N}  f 1
p .



Chapter 6

η.ζ for infinite languages

In this chapter we consider a countably infinite propositional language L∞

along with its corresponding set of sentences SL∞ (finite boolean combinations

of the primitive propositions in L∞) and study some properties of the consequence

relation η.ζ when considering possibly infinite sets of premises (in particular we

prove the non-compactness property of η.ζ). We finish the chapter with a rep-

resentation theorem for the functions of the form FΓ,θ, for Γ ⊆ SL∞ (possibly

infinite) and θ ∈ SL∞.

We start with a somewhat brief discussion that aims at proving the above

mentioned representation theorem.

Let 0 ≤ µ ≤ 1 and let F : [0, µ] −→ [0, 1] be a function with the following

properties:

1. F(0) = 0.

2. F is increasing.

3. For µ > 0, F is continuous and convex on [0, µ].

4. The greatest element δ ∈ [0, µ] for which F(δ) = 0 is less than 1 and the

line segment joining the points (δ, 0) and (1, 1) is a lower bound of F .

Let L be the set of straight lines ax + b for which the following conditions

hold:

1. a, b ∈ Q.

75
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2. b ≤ 0, 1− b ≤ a.

3. ax+ b ≤ F(x) for all x ∈ [0, µ].

We will denote these straight lines in L by lab (that is to say, lab(x) = ax+ b).

Take lab ∈ L. Since a and b are rational numbers we know that the points

at which it intersects the lines y = 0 and y = 1 are rational pairs: (−b
a
, 0) and

(1−b
a
, 1) respectively.

Let a = pa
qa

and b = pb
qb

with pa > 0 ≥ pb. In terms of pa, qa, pb and qb the pairs

(−b
a
, 0) and (1−b

a
, 1) become (−qapb

qbpa
, 0) and ( qbqa−qapb

qbpa
, 1) respectively.

Let L be a finite propositional language such that 2qbpa < 2|L| and SL its

corresponding set of sentences.1

Recall from Theorem 24 that we can find a finite set of sentences Γab ⊆ SL

and θab ∈ SL such that FΓab,θab behaves as follows:

FΓab,θab(η) =


0 if 0 ≤ η ≤ −b

a

lab(η) if −b
a
< η < 1−b

a

1 if 1−b
a
≤ η

In order to define Γab and θab we will proceed as in Section 3.4 by first defining

a suitable matrix for Γab and θab. The method will be very much based on that

implemented in Theorem 24, only that this time we will define Γab and θab in a

slightly different way from the matrix.

We will set a matrix with qbpa + 1 rows and 2qbpa columns. The first qbpa

coordinates of the row qbpa + 1 will be 0′s and the other qbpa coordinates will

be 1′s. For the other rows we will have exactly −qapb 1′s within the first qbpa

columns and exactly qbqa−qapb 1′s for the last qbpa columns distributed as follows:

For the ith row we will have −qapb consecutive 1′s starting at the ith coordinate

(when we reach the column qbpa we go back to the first one and carry on until

we complete a sequence of −qapb consecutive 1′s) and qbqa − qapb consecutive 1′s

starting at the coordinate qbpa + i (when we reach the column 2qbpa we go back

to the column qbpa + 1 and go on until we complete a sequence of qbqa − qapb

consecutive 1′s).

1We could impose the condition that 2qbpa ≤ 2|L| but, for further proofs, it will make things
easier if we assume that 2qbpa < 2|L|. This, as we will see, translates into the fact that we will
have atoms in L that do not logically imply any sentence in Γab ∪ {θab}.
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Let us see how it works with an example.

Let us suppose that −qapb
qbpa

= 2
5

and qbpa−qapb
qbpa

= 3
5
. Then the matrix

described above would correspond to



1 1 0 0 0 1 1 1 0 0

0 1 1 0 0 0 1 1 1 0

0 0 1 1 0 0 0 1 1 1

0 0 0 1 1 1 0 0 1 1

1 0 0 0 1 1 1 0 0 1

0 0 0 0 0 1 1 1 1 1


For our definition of Γab and θab we will need 2qbpa atoms,

α1, ..., αqbpa , αqbpa+1, ..., α2qbpa ⊆ AtL.

Define L∗ = L ∪ {s} and AtL
∗

in the obvious way. We want Γab ⊆ SL∗ and

θab ∈ SL∗. First, we set θab = s. For the ith column we take the following atom:

1. If 1 ≤ i ≤ qbpa we take the atom αi ∧ ¬s.

2. If qbpa + 1 ≤ i ≤ 2qbpa we take the atom αi ∧ s.

We then define Γab as the set of qbpa sentences given by the corresponding

disjunctions of atoms in AtL
∗

(that is, take the ith row of the matrix and define

φi ∈ Γab as the disjunction of the atoms for the columns whose ith coordinate is

1).

As seen in Theorem 24, Γab and θab thus defined give us FΓab,θab .

Let k ∈ N. Let us consider a collection of finite propositional languages

Li = {pi1, ..., piki}, with ki ∈ N, for all i ∈ {1, ..., k}. We will assume that for all

i, j ∈ {1, ..., k}, i 6= j, Li ∩ Lj = ∅ (that is to say, such languages are pairwise

disjoint). The set of atoms of Li will be denoted by AtLi .

Let us define, for each i, the language L∗i = Li ∪ {s} and its respective set of

atoms AtL
∗
i .

Let us take now a collection of sets of sentences Γi = {φi1, ..., φimi} ⊆ SL∗i and

θ = s, with mi ∈ N, for all i ∈ {1, ..., k}.
Set L∗ = ∪ki=1L

∗
i and Γ = ∪ki=1Γi ⊆ SL∗.
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Claim 70 Let η ∈ [0, 1]. If w is a probability function on L∗ such that w(Γ) ≥ η

then we have what follows:

w(s) ≥ max{FΓi,s(η) | 1 ≤ i ≤ k}.

Proof. Let w be a probability function on L∗ such that w(Γ) ≥ η.

For each i we can restrict w to a probability function wi on Li
∗. We will then

have that wi(α
i) = w(αi) for all αi ∈ AtLi∗ .

As a result we will have that wi(Γi) ≥ η since wi(α
i) = w(αi) for all αi ∈ AtLi∗

and also

w(s) = wi(s) ≥ FΓi,s(η).

We can then conclude that w(s) ≥ max{FΓi,s(η) | 1 ≤ i ≤ k}. �

For the next claim we need to consider our sets of sentences Γi to be of the

form Γaibi , for i ∈ {1, ..., k}, with ai =
pai
qai

and bi =
pbi
qbi

.

Claim 71 Let η ∈ [0, 1]. We claim that there exists a probability function w on

L∗ such that w(Γ) ≥ η and

w(s) = max{FΓaibi ,s
(η) | 1 ≤ i ≤ k}.

Proof. For each i let wi be a probability function on L∗i such that wi(Γaibi) ≥ η

and wi(s) = FΓaibi ,s
(η).

Let us assume that

wj(s) = max{wi(s) | 1 ≤ i ≤ k},

for some j ∈ {1, ..., k}.
We can define a probability function w on L∗ in a way that w(αj) = wj(α

j)

for all α ∈ AtL∗j such that w(Γ) ≥ η and w(s) = FΓajbj ,s
(η).

If wi(s) > 0 we know that for Γaibi thus defined the only atoms of the form

αi ∧ s, with αi ∈ AtLi , for which wi(α
i ∧ s) > 0 are

αiqbipai+1 ∧ s, ..., αi2qbipai ∧ s.

Further, by an argument similar to that employed in the proof of Theorem 24,

the probability assigned to each such atom by wi can be assumed to be the same:
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wi(s)
qbipai

for each atom of the form αi ∧ s. Likewise, when wi(s) > 0, we will have

that the only atoms of the form αi ∧ ¬s for which wi(α
i ∧ ¬s) > 0 are

αi1 ∧ ¬s, ..., αiqbipai ∧ ¬s.

The probability assigned to these atoms by wi can be assumed to be the same

too: wi(¬s)
qbipai

for each atom of the form αi ∧ ¬s.2

Let us define the following sets for each i ∈ {1, ..., k}:

Ai = {αir ∈ AtLi | 1 ≤ r ≤ qbipai},

Bi = {αir ∈ AtLi , | qbipai + 1 ≤ r ≤ 2qbipai}.

Consider the cartesian product B1× ...×Bk. Its cardinality is Πk
i=1qbipai . For

each k-tuple (α1, ..., αk) ∈ B1 × ...×Bk we will set w in a way that

w(s ∧
k∧
i=1

αi) =
wj(s)

Πk
i=1qbipai

.

Consider now the cartesian productA1×...×Ak. For each k-tuple (α1, ..., αk) ∈
A1 × ...× Ak we will set w in a way that

w(¬s ∧
k∧
i=1

αi) =
wj(¬s)

Πk
i=1qbipai

.

Notice that for each i ∈ {1, ..., k} and each r ∈ {qbipai + 1, ..., 2qbipai} we will

have that

w(s ∧ αir) =
wj(s)

qbipai
≥ wi(s)

qbipai
.

Thus, since given φij ∈ Γaibi for j ∈ {1, ...,mi} there is a larger number of

atoms of the form s ∧ αi (with αi ∈ Bi) logically implying φij than atoms of the

form ¬s ∧ αi (with αi ∈ Ai) implying φij, the probability function w will be as

desired. �

These two claims amount to saying that given a finite collection of sets of

2Notice that, although not necessarily the case when wi(s) = 0 we can assume, without loss
of generality, that wi has this property since we have atoms of the form αi ∧ ¬s not logically
implying any sentences in Γaibi,s that could be assigned probability greater than 0 by wi –recall
that 2qbi

pai
< 2|Li|.
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sentences of the form

{Γaibi ⊆ SL∗i | 1 ≤ i ≤ k}

as described above,

F⋃
i Γaibi ,s

(η) = max{FΓaibi ,s
(η) | 1 ≤ i ≤ k},

for η ∈ [0, 1].

Let
⋃

Γab =
⋃
{Γab| lab ∈ L}.

For any finite subset ∆ ⊂ {Γab | lab ∈ L} we have that, for any η ∈ [0, 1],

F⋃
∆,s(η) = max{FΓab,s(η)| Γab ∈ ∆}.

The set {Γab| lab ∈ L} is countable. Let us define the sequence {Γn} by

numbering all its elements.

Let η ∈ [0, µ]. We can define a sequence of probability functions {wn} in a

way that

wn(
n⋃
i=1

Γi) ≥ η

and

wn(s) = F⋃n
i=1 Γi,s(η) = max{FΓi,s(η)| 1 ≤ i ≤ n}

for all n ∈ N.

Notice that {wn(s)} is actually an increasing sequence bounded above by F(η)

with limit sup{FΓn,s(η) |n ∈ N}.
Thus, F⋃

Γab,s(η) = sup{FΓab,s(η) | lab ∈ L}.

Let us define recursively the sequence {∆n} as follows:

1. ∆1 = Γ1.

2. ∆n = ∆n−1 ∪ {Γn}.

{Ln} will be the corresponding sequence of languages (that is to say, Ln will

be the language necessary to define all the sets of sentences Γ ∈ ∆n in the way

shown earlier, with s among its propositions).

Theorem 72 Let η ∈ [0, µ]. F⋃
Γab,s(η) = F(η).
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Proof. We can define a sequence of probability functions {wn}, with wn a prob-

ability function on Ln, such that wn(
⋃

∆n) ≥ η and wn(s) ≤ F(η) for all n ∈ N,

with {wn(s)} increasing and with limit F(η). In the limit we will have that

F⋃
Γab,s(η) = F(η). �

Proposition 73 Let Γ ⊆ SL∞ be infinite, θ ∈ SL∞ and assume that Γη .ζ θ,

for some η, ζ ∈ [0, 1]. It is not generally the case that there exists a finite subset

∆ ⊂ Γ such that ∆η .ζ θ.

Proof. Let F be as above and suppose that there exists η ∈ [0, µ] ∩Q such that

F(η) is irrational. The previous theorem proves that F⋃
Γab,s(η) = F(η) and,

therefore, that
⋃

Γab
η .F(η) s. However, for any finite subset ∆ ⊂ {Γab | lab ∈ L},

∆η 7F(η) s since F∆,s(η) ∈ Q (see Proposition 20) and F∆,s(η) < F(η). 3 �

6.1 A representation theorem for FΓ,θ within L∞

Let Γ = {φn |n ∈ N} ⊆ SL∞ and θ ∈ SL∞.

Let us define the sequence {∆n} recursively as follows:

1. ∆1 = {φ1}.

2. ∆n = ∆n−1 ∪ {φn}.

{Ln} will be the corresponding sequence of languages (that is to say, Ln will

be a language large enough to define all sentences in ∆n).

Let η ∈ [0,mc(Γ)].4

Notice that we can define a sequence {wn}, with wn a probability function

on Ln such that wn(∆n) ≥ η and wn(θ) = F∆n,θ(η). The sequence {wn(θ)} is

increasing and certainly bounded above and we will have that

FΓ,θ(η) = lim
n→∞

F∆n,θ(η).

In short we will write FΓ,θ = limn→∞ F∆n,θ.

3Notice that we could have done with a much simpler construction of Γ to prove this propo-
sition. Here we use the construction of Γ originally intended for the representation theorem of
graphs of functions of the form FΓ,θ, with Γ ⊆ SL∞ and θ ∈ SL∞.

4In [26] Knight gives a nice characterization of η-consistency for infinite sets of sentences: Γ
is η-consistent if and only if every finite subset of Γ is η-consistent.
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Next we state and prove some properties of FΓ,θ.

Proposition 74 FΓ,θ(0) ∈ {0, 1}, FΓ,θ(1) ∈ {0, 1} and on (mc(Γ), 1] FΓ,θ has

constant value 1.

Proof. Let us first prove that FΓ,θ(0) ∈ {0, 1}. Let us proceed by reductio ad

absurdum and assume that FΓ,θ(0) = ζ, with 0 < ζ < 1. Then we could find n ∈ N
such that 0 < F∆n,θ(0) < ζ, which contradicts the fact that F∆n,θ(0) ∈ {0, 1} (by

Proposition 21).

That FΓ,θ(1) = 1 is clear if mc(Γ) < 1. If mc(Γ) = 1 we can proceed in the

same way as above to prove that FΓ,θ(1) ∈ {0, 1}.
That FΓ,θ has constant value 1 on (mc(Γ), 1] follows from the fact that

mc(Γ) = inf{mc(∆n) |n ∈ N}.5

�

Proposition 75 FΓ,θ is increasing.

Proof. That FΓ,θ is increasing on (mc(Γ), 1] is clear. Let us proceed by reductio

ad absurdum to prove that FΓ,θ is also increasing on [0,mc(Γ)].

Assume that 0 ≤ η− < η+ ≤ mc(Γ) and that FΓ,θ(η
+) < FΓ,θ(η

−). Thus

we can find n ∈ N for which FΓ,θ(η
+) < F∆n,θ(η

−) ≤ FΓ,θ(η
−). But F∆n,θ is

increasing (see Proposition 16) and therefore F∆n,θ(η
−) ≤ F∆n,θ(η

+), yielding

FΓ,θ(η
+) < F∆n,θ(η

+). Contradiction. �

Proposition 76 FΓ,θ is convex on [0,mc(Γ)].

Proof. Let us argue again by reductio ad absurdum.

Assume that 0 ≤ η− < η+ ≤ mc(Γ) and that there exists λ ∈ [0, 1] for which

FΓ,θ(λη
− + (1− λ)η+) > λFΓ,θ(η

−) + (1− λ)FΓ,θ(η
+).

We could find n ∈ N for which F∆n,θ(η
−) ≤ FΓ,θ(η

−), F∆n,θ(η
+) ≤ FΓ,θ(η

+)

and

F∆n,θ(λη
− + (1− λ)η+) > λFΓ,θ(η

−) + (1− λ)FΓ,θ(η
+),

5Although quite straightforward see [26] for a proof if desired.
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yielding

F∆n,θ(λη
− + (1− λ)η+) > λF∆n,θ(η

−) + (1− λ)F∆n,θ(η
+).

But F∆n,θ needs to be convex (see Proposition 18). Contradiction. �

Proposition 77 FΓ,θ is continuous on [0,mc(Γ)].

Proof. FΓ,θ is increasing and convex on [0,mc(Γ)]. Thus, to prove continuity on

[0,mc(Γ)], it suffices to show that FΓ,θ is continuous from the left at mc(Γ).6

Let us proceed by reductio ad absurdum and assume that FΓ,θ is not continuous

from the left at mc(Γ). Thus, for all η ∈ [0,mc(Γ)),

FΓ,θ(mc(Γ))− FΓ,θ(η) > ε

for some ε > 0.

Let n ∈ N be such that

FΓ,θ(mc(Γ))− F∆n,θ(mc(Γ)) = ε− < ε.

By continuity of F∆n,θ (see Proposition 19) we can find η ∈ [0,mc(Γ)) such

that

F∆n,θ(mc(Γ))− F∆n,θ(η) < ε− ε−,

yielding FΓ,θ(η) < F∆n,θ(η). Contradiction. �

Proposition 78 Assume that FΓ,θ(0) = 0 and that δ < 1 is the greatest element

in the interval [0,mc(Γ)] for which FΓ,θ(δ) = 0. FΓ,θ is bounded below by the line

segment joining the points (δ, 0) and (1, 1).

Proof. Let us proceed again by reductio ad absurdum.

Assume that there exists µ > δ such that the pair (µ, FΓ,θ(µ)) lies below the

straight segment joining (δ, 0) and (1, 1).

Consider the straight line through (µ, FΓ,θ(µ)) and (1, 1), say ux + v, and

suppose that uλ+ v = 0.

Let us define the sequence {δn}, for

δn = max{η ∈ [0, 1] |F∆n,θ(η) = 0}.
6See [44].
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Notice that {δn} converges to δ. Thus there has to exist n for which δn < λ.

Therefore F∆n,θ is bounded below by the straight segment joining (δn, 0) and

(1, 1) (see Proposition 22), yielding F∆n,θ(µ) > FΓ,θ(µ). Contradiction. �

Theorem 79 A function F : [0, 1] −→ [0, 1] is of the form FΓ,θ for some Γ ⊆
SL∞ and θ ∈ SL∞ if and only if it has the following properties, for µ ∈ [0, 1]:

1. F(0) ∈ {0, 1}, F(1) ∈ {0, 1} and, on the interval (µ, 1], it has constant

value 1.

2. F is increasing.

3. For µ > 0, F is continuous and convex on [0, µ].

4. If F(0) = 0 and the greatest element in the interval [0, µ] at which F has

value 0 is δ < 1 then it is bounded below by the line segment joining the

points (δ, 0) and (1, 1).

Proof. The right implication follows mostly from the discussion in the previous

section culminating in Theorem 72. The only cases not covered in the initial

discussion were F(x) = 0 for all x ∈ [0, 1] and F(x) = 1 for all x ∈ [0, 1]. For the

former we can set θ to be a contradiction and Γ any consistent set of sentences

and for the latter we can set θ to be a tautology and Γ any set of sentences.

The right implication follows from the above propositions (Propositions 74,

75, 76, 77 and 78) and the left implication follows from the discussion in the

previous section culminating in Theorem 72. �



Chapter 7

Fuzzy logics

In this chapter we develop some of the ideas presented in previous sections

within the frame of fuzzy logics, particularly within the frame of Gödel and

 Lukasiewicz logics. The weight functions to be considered in this section will

be truth valuations and thus we will be dealing with degrees of truth instead of

degrees of belief.

We start by introducing the logic BL (short for Basic Logic).

7.1 Basic Logic, BL

Let L = {p1, ..., pl} be a finite propositional language.

We define SL recursively as follows:

1. 0̄ ∈ SL.

2. Let p ∈ L. Then p ∈ SL.

3. Let θ, φ ∈ SL. Then ¬φ, φ→ θ, φ&θ, φ ∧ θ, φ ∨ θ ∈ SL.

θ ∧ φ is short for θ&(θ → φ).

θ ∨ φ abbreviates ((θ → φ)→ φ) ∧ ((φ→ θ)→ θ).

¬φ abbreviates φ→ 0̄.1.

Thus we only have two primitive connectives and a constant from which all

the other connectives can be defined (&, →, 0̄). For convenience though we will

deal with all of them in most results.

1See [21] for a fuller account of this language.

85
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Let us first define the basic fuzzy logic, BL, as in [21].

Definition 80 BL is given by the following axiom schemas:

1. (φ→ ψ)→ ((ψ → ξ)→ (φ→ ξ))

2. (φ ∧ ψ)→ φ

3. (φ ∧ ψ)→ (ψ ∧ φ)

4. (φ ∧ (φ→ ψ))→ (ψ ∧ (ψ → φ))

5. (φ→ (ψ → ξ))→ ((φ ∧ ψ)→ ξ)

6. ((φ ∧ ψ)→ ξ)→ (φ→ (ψ → ξ))

7. ((φ→ ψ)→ ξ)→ (((φ→ ψ)→ ξ)→ ξ)

8. 0̄→ φ

The deduction rule is Modus Ponens.

7.2 Gödel logic, G

Let us now define the logic G (Gödel logic).

Definition 81 G is an extension of the axiom system BL by the axiom schema

φ→ (φ ∧ φ).

The deduction rule is, as in BL, Modus Ponens.

The notion of proof in G is defined in the obvious way.

G proves the equivalence (φ&ψ) ≡ (φ ∧ ψ).2 Thus we can dispense with one

of these connectives.

Definition 82 Let w : SL −→ [0, 1]. We say that w is a G-valuation on L if,

for θ, φ ∈ SL, we have what follows:

1. w(φ&θ) = min{w(φ), w(θ)}
2See [21] for a proof of this result.
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2. w(φ→ θ) =

{
1 if w(φ) ≤ w(θ)

w(θ) otherwise

3. w(0̄) = 0

From these three clauses we can deduce the behaviour of G-valuations with

respect to the other connectives:

1. w(φ ∧ θ) = w(φ&θ) = min{w(φ), w(θ)}

2. w(φ ∨ θ) = max{w(φ), w(θ)}

3. w(¬φ) =

{
1 if w(φ) = 0

0 otherwise

We will call those sentences in SL that are given value 1 by all G-valuations

G-tautologies whereas G-contradictions will be those sentences that are given

value 0 for all G-valuations.

We may wonder if we could derive some sort of consistency measure from

G-valuations in the same way as Knight did from probability functions in [25]

and [26] (see Chapter 2).

Throughout let Γ = {φ1, ..., φk} ⊆ SL and θ ∈ SL.

Definition 83 Let η ∈ [0, 1]. We say that Γ is Gη-consistent if and only if there

exists a G-valuation w such that w(Γ) ≥ η.

Definition 84 Let η ∈ [0, 1]. We say that Γ is maximally Gη-consistent if and

only if Γ is Gη-consistent and there is no λ > η such that Γ is Gλ-consistent.

Notice that saying that Γ is Gη-consistent is equivalent to claiming that there

exists a G-valuation w such that w(
∧

Γ) ≥ η (
∧

Γ is short for φ1 ∧ ... ∧ φk).

Here and throughout we will denote the set of propositional variables that

occur in at least one sentence of Γ by LΓ and the propositional variables that

occur in a sentence θ by Lθ.

Let us define recursively the following infinite collection of sets of sentences

in SL:

• C1 = L ∪ {0̄}.
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• Cn = Cn−1 ∪ {φ→ ψ, φ&ψ| φ, ψ ∈ Cn−1}, n ∈ N.

We will denote this collection by C (that is, C = {Cn |n ∈ N})

Proposition 85 Let w be a G-valuation such that w(θ) > 0. Let us define the

G-valuation w∗ in the following way:

For p ∈ L,

w∗(p) =

{
1 if w(p) > 0

0 otherwise

We claim that w∗ is such that w∗(θ) = 1.

Proof. Let us proceed by induction on C.
Let us first assume that θ ∈ C1 is such that there exists a G-valuation w for

which w(θ) > 0 and define w∗ as above. Notice that θ has to be a propositional

variable since w(0̄) = 0. Thus clearly w∗(θ) = 1.

Assume now that the result is true for all sentences in Cn−1. That is to say,

if φ ∈ Cn−1 is such that there exists a G-valuation w for which w(φ) > 0 then w∗

defined from w as above will be such that w∗(φ) = 1.

Let θ ∈ Cn − Cn−1 for some n ∈ N. Let w be such that w(θ) > 0 and define

w∗ as above from w.

Let us suppose first that θ = φ → ψ for some φ, ψ ∈ Cn−1. Since by as-

sumption w(θ) > 0 we will have that either w(φ) = w(ψ) = 0 or w(ψ) > 0. If

w(φ) = w(ψ) = 0 then w∗(φ) = w∗(ψ) = 0 and w∗(θ) = 1. If w(ψ) > 0 then, by

inductive hypothesis, we will have that w∗(ψ) = 1 and, therefore, that w∗(θ) = 1.

Suppose now that θ = φ&ψ for some φ, ψ ∈ Cn−1. We know that w(φ) > 0

and that w(ψ) > 0. By inductive hypothesis w∗(φ) = 1 and w∗(ψ) = 1. Thus

w∗(θ) = 1. �

Corollary 86 Let Γ be Gη-consistent, for η ∈ (0, 1]. Then Γ is maximally G1-

consistent.

Proposition 87 Let η ∈ (0, 1]. Γ is Gη-consistent if and only if Γ is classically

consistent.

Proof. Any classical valuation is also a G-valuation and thus the left implication

holds. To prove the right implication assume that Γ is Gη-consistent, η ∈ (0, 1].
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By Proposition 85 we can define a new G-valuation w∗ (which is also a classical

valuation) from any w being such that w(Γ) ≥ η. Thus it follows that Γ is

classically consistent. �

Corollary 88 Γ is maximally G0-consistent if and only if Γ is classically incon-

sistent.

Thus we see that G-valuations are not good candidates for measuring degrees

of consistency. They behave classically and turn out to be useless when it comes

to determining any presumable difference among distinct inconsistent sets.

Proposition 89 Let w be a G-valuation such that w(θ) = η for some η ∈ (0, 1)

Then there exists a propositional variable p ∈ Lθ such that w(p) = η.

Proof. The result can be proved recursively in a pretty trivial way. Let w be as

stated above.

If θ is a propositional variable, say p, then w(p) = η.

If θ = φ&ψ for some φ, ψ ∈ SL then w(φ) = η or w(ψ) = η.

If θ = φ→ ψ for some φ, ψ ∈ SL then w(ψ) = η.

Notice that θ can not be 0̄ since w(0̄) = 0 for all G-valuations w. �

Corollary 90 Let w be a G-valuation and A = {w(p) | p ∈ Lθ} ∪ {0, 1}. We

have that w(θ) ∈ A.

Proposition 91 Let w be a G-valuation such that 0 < w(θ) < 1 and λ ∈ (0, 1].

We claim that there exists a G-valuation w∗ such that w∗(θ) = λ.

Proof. Let w be a G-valuation such that w(θ) = η for some η ∈ (0, 1).

That there exists a G-valuation w∗ such that w∗(θ) = 1 was proved in Propo-

sition 85. Let us take λ ∈ (0, 1) and prove that we can define a G-valuation w∗

such that w∗(θ) = λ.

Let h : [0, 1] −→ [0, 1]. The map h has the following properties:

1. h(0) = 0, h(1) = 1.

2. h is strictly increasing.

3. h(η) = λ.
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Let w∗ be such that w∗(p) = h(w(p)) for all p ∈ L.

We claim that h will be such that w∗(φ) = h(w(φ)) for all φ ∈ SL and thus

w∗(θ) = λ. To see this we can proceed by induction on C.
Let φ ∈ SL.

Assume first that φ ∈ C1. If φ = p for some p ∈ L then, by definition,

w∗(p) = h(w(p)). On the other hand, if φ = 0̄ then clearly w∗(0̄) = h(w(0̄)) = 0.

Assume now that φ ∈ Cn − Cn−1 for some n ∈ N and that w∗(ψ) = h(w(ψ))

for all ψ ∈ Cn−1.

Let φ = ψ → ξ for some ψ, ξ ∈ Cn−1. If w∗(φ) = 1 then w∗(ψ) ≤ w∗(ξ).

Thus, h(w(ψ)) ≤ h(w(ξ)) and, since h is strictly increasing, w(ψ) ≤ w(ξ). Hence,

w(φ) = h(w(φ)) = 1. If w∗(φ) < 1 then w∗(ψ) > w∗(ξ) = w∗(φ). Thus,

h(w(ψ)) > h(w(ξ)) and, since h is strictly increasing, w(ψ) > w(ξ) = w(φ). But

w∗(ξ) = h(w(ξ)). Therefore, w∗(φ) = h(w(φ)).

Let φ = ψ&ξ for some ψ, ξ ∈ Cn−1. Assume that w∗(φ) = w∗(ψ) -that is,

w∗(ψ) ≤ w∗(ξ). Thus, h(w(ψ)) ≤ h(w(ξ)). Since h is strictly increasing we can

conclude that w(ψ) ≤ w(ξ) and therefore w(φ) = w(ψ). But w∗(ψ) = h(w(ψ)).

Thus, w∗(φ) = h(w(φ)). �

We define now an inference relation based on G-valuations similar to η.ζ .

Let η, ζ ∈ [0, 1].

Definition 92 We say that Γ (η, ζ)-implies θ (denoted Γη Dζ θ) if and only if,

for all G-valuations w, if w(Γ) ≥ η then w(θ) ≥ ζ.

Next we introduce the equivalent to FΓ,θ for η Dζ , which we denote by GΓ,θ.

Definition 93 The function GΓ,θ : [0, 1] −→ [0, 1] is defined as follows:

GΓ,θ(η) = sup{ζ |Γη Dζ θ}.

Let us consider first the following example. Take Γ = {p} and θ = p ∨ ¬p.
Notice that GΓ,θ(0) = 0 but there is no G-valuation w such that w(θ) = 0. To

see this take ε > 0. We can always find w, a G-valuation, such that 0 < w(θ) < ε

(set for example w(p) = ε
2
). This tells us that the supremum, the value given by

the function GΓ,θ at some point in the interval [0, 1], is not always attained by a

G-valuation.
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Proposition 94 GΓ,θ is increasing.

Proof. It follows trivially from the definition of η Dζ . �

Proposition 95 GΓ,θ(1) ∈ {0, 1}.

Proof. Let us proceed by reductio ad absurdum and assume that 0 < GΓ,θ(1) =

µ < 1. Thus there has to exist a G-valuation w such that w(
∧

Γ) = 1 and

1 > w(θ) ≥ µ. We can define a new G-valuation w∗ the way we did in Proposition

91 such that w∗(
∧

Γ) = 1 and w∗(θ) = λ < µ. Notice that we can define this

valuation taking any value of λ in the interval (0, µ). Hence GΓ,θ(1) = 0, which

contradicts the assumption we started with. �

Proposition 96 GΓ,θ(0) ∈ {0, 1}.

Proof. Let us proceed again by reductio ad absurdum by assuming that 0 <

GΓ,θ(0) = µ < 1. This means that there exists a G-valuation w such that 1 >

w(θ) ≥ µ. We can define a new G-valuation w∗ as in Proposition 91 such that

w∗(θ) = λ < µ for any λ ∈ (0, µ). Hence we have that GΓ,θ(0) = 0, which

contradicts the assumption above. �

Proposition 97 Let η ∈ [0, 1]. Then GΓ,θ(η) ∈ {0, η, 1}.

Proof. By Proposition 96 we know that GΓ,θ(0) ∈ {0, 1} and by Proposition 95

that GΓ,θ(1) ∈ {0, 1}.
Let η ∈ (0, 1).

Let us proceed by reductio ad absurdum and assume first that η < GΓ,θ(η) =

ζ < 1. Since GΓ,θ is increasing, GΓ,θ(1) = 1 and GΓ,θ(η) < 1 there has to exist a

G-valuation w such that w(
∧

Γ) = η + u and w(θ) = ζ + v, with u ∈ [0, 1 − η)

and v ∈ [0, 1− ζ). If ζ + v < η + u then we can define a new G-valuation w∗ as

seen in Proposition 91 such that w∗(
∧

Γ) = η and w∗(θ) < η. If η + u < ζ + v

we can define a new G-valuation w∗ the way we did in Proposition 91 such that

w∗(
∧

Γ) = η and η < w∗(θ) = λ for any λ ∈ (η, ζ]. If η+ u = ζ + v we can define

w∗ in a way that w∗(
∧

Γ) = w∗(θ) = η. Thus, we can conclude that GΓ,θ(η) ≤ η.

Let us suppose now that 0 < GΓ,θ(η) = ζ < η. By what was said above,

there exists a G-valuation w such that w(
∧

Γ) = η + u and w(θ) = ζ + v, with

u ∈ [0, 1−η) and v ∈ [0, η−ζ). We can define a G-valuation w∗ as in Proposition

91 such that w∗(
∧

Γ) = η and w∗(θ) = λ for each λ ∈ (0, ζ]. Thus, GΓ,θ(η) = 0.

This contradicts the assumption above.

Therefore we can conclude that GΓ,θ(η) ∈ {0, η, 1}. �
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Proposition 98 GΓ,θ is continuous on (0, 1].

Proof. Let us first assume that GΓ,θ is not continuous from the right at η ∈ (0, 1).

This means that, for some ε > 0, GΓ,θ(x)− GΓ,θ(η) > ε for all x ∈ (η, 1]. In view

of the previous proposition there are only a few cases in which this could happen:

1. GΓ,θ(η) = η and GΓ,θ(x) = 1 for all x ∈ (η, 1].

In this case there has to exist a G-valuation w such that w(
∧

Γ) = η and

η ≤ w(θ) < 1. We can then define a G-valuation w∗ as in Proposition

91 such that η < w∗(
∧

Γ) < 1 and η < w∗(θ) < 1. That contradicts the

assumption above.

2. GΓ,θ(η) = 0 and GΓ,θ(x) = x or GΓ,θ(x) = 1 for all x ∈ (η, 1].

Notice that
∧

Γ cannot be a G-contradiction. Let w be such that w(
∧

Γ) ≥
η and w(θ) < η. Thus we could define a new G-valuation w∗ from w as

in Proposition 91 such that w∗(θ) < η < w∗(
∧

Γ). This would contradict

what we assumed at the beginning.

Let us assume now that GΓ,θ is not continuous from the left at η ∈ (0, 1]. That

is, for some ε > 0, GΓ,θ(η)− GΓ,θ(x) > ε for all x ∈ [0, η).

For η ∈ (0, 1) we can proceed as we did above:

1. GΓ,θ(x) = 0 for all x ∈ [0, η) and GΓ,θ(η) = η or GΓ,θ(η) = 1.

There has to exist a G-valuation w such that 0 ≤ w(θ) < w(
∧

Γ) < η. We

can define a new G-valuation w∗ such that w∗(θ) < η < w∗(
∧

Γ), which

contradicts the assumption above.

2. GΓ,θ(x) = x for all x ∈ [0, η) and GΓ,θ(η) = 1.

In this case there has to exist a G-valuation w such that 0 < w(
∧

Γ) < η

and w(
∧

Γ) ≤ w(θ) < 1. We could define a new G-valuation w∗ as we did

above which would contradict what we assumed.

For η = 1:

1. GΓ,θ(x) = 0 for all x ∈ [0, 1) and GΓ,θ(1) = 1.

Let us first suppose that 0 < w(
∧

Γ) < 1 for some G-valuation w. In

this case, since by assumption GΓ,θ(1) = 1, there has to exist w′ for which
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0 < w′(
∧

Γ) < 1 and w′(θ) = 0. We can define a new G-valuation w∗ as

in Proposition 85 such that w∗(
∧

Γ) = 1 and w∗(θ) = 0, which contradicts

the assumption we started with.

Let us assume now that w(
∧

Γ) ∈ {0, 1} for all G-valuations w. Notice

that if
∧

Γ were a G-contradiction then GΓ,θ(x) = 1 for all x ∈ (0, 1]. If
∧

Γ

were a G-tautology then GΓ,θ(x) = 1 or GΓ,θ(x) = 0 for all x ∈ [0, 1]. Let

us assume now that
∧

Γ is neither a G-tautology nor a G-contradiction. In

this case, assuming that GΓ,θ(1) = 1, for all x ∈ (0, 1] we would have that

GΓ,θ(x) = 1 since, by assumption, w(
∧

Γ) ∈ {0, 1}.

We have proved continuity of GΓ,θ on (0, 1]. �

The next proposition gives us a representation for the functions of the form

GΓ,θ.

Proposition 99 GΓ,θ is of one of the following forms:

1. GΓ,θ(η) = 0 for all η ∈ [0, 1]

2. GΓ,θ(η) = η for all η ∈ [0, 1]

3. GΓ,θ(η) = 1 for all η ∈ [0, 1]

4. GΓ,θ(η) =

{
0 if η = 0

1 otherwise

Proof. It follows directly from the previous propositions (94, 95, 96, 97 and 98).

�

That the forms above are possible graphs for some Γ and θ can easily be

showed.

Let p ∈ L.

1. Let Γ = {p} and θ = ¬(p→ p). In this case GΓ,θ(η) = 0 for all η ∈ [0, 1].

2. Let Γ = {p} and θ = p. In this case GΓ,θ(η) = η for all η ∈ [0, 1].

3. Let Γ = {p} and θ = p→ p. Here GΓ,θ(η) = 1 for all η ∈ [0, 1].

4. Let Γ = {¬(p→ p)} and θ = p. For this example GΓ,θ(0) = 0 and GΓ,θ(η) =

1 for all η ∈ (0, 1].
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7.3  Lukasiewicz logic,  L

Let us define  L (short for  Lukasiewicz logic).

Definition 100  L is obtained by extending BL by the axiom schema

¬¬φ→ φ.

The deduction rule is Modus Ponens.

In  L the only primitive connective is→. The other connectives can be defined

from → and 0̄. In particular, ¬θ stands for θ → 0̄ and θ&φ for ¬(θ → ¬φ).

We can introduce a new connective, ∨, defined from the previous ones. θ∨φ
will be short for ¬θ → φ.

Definition 101 Let w : SL −→ [0, 1]. We say that w is an  L-valuation if, for

φ, θ ∈ SL, we have what follows:

1. w(φ→ θ) = min{1, 1− w(φ) + w(θ)}

2. w(0̄) = 0

From these two clauses we can define the behaviour of  L-valuations for the

other connectives:

1. w(φ ∧ θ) = min{w(φ), w(θ)}

2. w(φ ∨ θ) = max{w(φ), w(θ)}

3. w(¬φ) = 1− w(φ)

4. w(φ&θ) = max{0, w(φ) + w(θ)− 1}

5. w(φ∨θ) = min{1, w(φ) + w(θ)}

Next we state a central theorem in  Lukasiewicz logic. In order to do so we

need to specify some previous notation.

Let θ ∈ SL. Assume that Lθ = {p1, ..., pn} ⊆ L. We will denote this by

θ(p1, ..., pn).

Let w be an  L-valuation.

We have that w(θ) = f(w(p1), ..., w(pn)) for some f : [0, 1]n → [0, 1]. We will

denote this f by fθ –we will write sometimes fθ(x1, ..., xn).
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Theorem 102 McNaughton’s Theorem

In order that a function f : [0, 1]n → [0, 1] be of the form fθ for some θ ∈ SL
it is necessary and sufficient that f satisfy the following two conditions:

1. f is continuous on [0, 1]n.

2. There are a finite number of distinct polynomials with integer coefficients

λi, 1 ≤ i ≤ µ, λi = bi +m1ix1 + ...+mnixn, such that for every (x1, ..., xn),

0 ≤ xi ≤ 1 for all i ∈ {1, ..., n}, there is λj for some j ∈ {1, ..., µ} such that

f(x1, ..., xn) = λj(x1, ..., xn).

For an alternative presentation and a proof of this theorem see [30].

Throughout let Γ ⊆ SL.

Definition 103 Let η ∈ [0, 1]. We say that Γ is  Lη-consistent if and only if there

exists an  L-valuation w such that w(Γ) ≥ η.

Definition 104 Let η ∈ [0, 1]. We say that Γ is maximally  Lη-consistent if and

only if Γ is  Lη-consistent and there is no λ > η such that Γ is  Lλ-consistent.

Let us consider now the examples we started with in Chapter 1 and check

how this notion of  L-consistency behaves.

We formulated Kyburg’s lottery paradox through the set of sentences

Γn = {¬t1, ...,¬tn, t1 ∨ ... ∨ tn}.

Recall from Chapter 2 that Γn was maximally n
n+1

-consistent (and n
n+1

-coherent).

It turns out that Γn is maximally  L n
n+1

-consistent too (in terms of  L the set Γn

would be given by {¬t1, ...,¬tn, t1∨...∨tn}. That is to say, we would take the dis-

junction of the paradox to be given by the connective ∨). To see that this is indeed

the case consider an  L-valuation that assigns 1
n+1

to each propositional variable

involved in Γn. It is easy to see that Γn is  L n
n+1

-consistent (in fact maximally

 L n
n+1

-consistent).

The Sorites paradox was formulated by means of the set of sentences

Γn = {pn, pn → pn−1, ..., p2 → p1,¬p1}.
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Γn is maximally  L n
n+1

-consistent. To see this consider an  L-valuation w such

that w(pi) = i
n+1

for all i ∈ {1, ..., n}. In can easily be seen that w gives Γn its

maximal  L-consistency.

Thus the notion of  L-consistency seems to go well with the idea that the bigger

the set of sentences the less inconsistent –at least in some examples (as we justified

in Chapter 2), very much like the notions of η-consistency and η-coherence do.

However such an approach to measuring inconsistency has a serious drawback, as

the following example shows.

Let us consider the following set of sentences:

Γ = {p→ q,¬p→ q, p→ ¬q,¬p→ ¬q}

for p, q ∈ L. Γ is  L1-consistent (take an  L-valuation w such that w(p) = w(q) = 1
2
)

but classically inconsistent.

Furthermore, since not all tautologies (or contradictions) are  L-tautologies

(or  L-contradictions respectively) –for example, the sentence p → (p&p) is not

an  L-tautology– we have that a set of sentences Γ which contains an explicit

contradiction does not have to be necessarily maximally  L0-consistent.

The converse holds though.

Proposition 105 If Γ is consistent then Γ is maximally  L1-consistent.3

Proof. Since classical valuations are also  L-valuations and the connectives in  L

behave classically under such valuations it is clear that if Γ is classically consistent

then Γ is maximally  L1-consistent. �

Let ∆ = {φ1, ..., φn} ⊆ SL be finite.

We will use the following abbreviations:∧
∆ for φ1 ∧ ... ∧ φn.∨
∆ for φ1 ∨ ... ∨ φn.∨
∆ for φ1∨...∨φn.

&∆ for φ1&...&φn.

3From a classical point of view the connectives ∧ and & are equivalent and so are ∨ and ∨.
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In some cases we will indicate with superscripts the number of sentences in-

volved for any of the connectives above. For example
∨n θ stands for θ ∨ ... ∨ θ,

where θ occurs n times.

It is customary to refer to &nθ (that is, θ&...&θ, where θ occurs n times) by

θn.

Notice that the  L-consistency of a set of sentences Γ is the same as the  L-

consistency of the sentence
∧

Γ. We will talk indistinctively about the consistency

of sentences and sets of sentences.

Proposition 106 For all n ∈ N we can construct a sentence φ ∈ SL (which we

will denote by φ 1
n

) that is maximally  L 1
n

-consistent.

Proof. Let us define φ 1
n

as follows:

φ 1
n

= ¬p ∧ pn−1

Let us check that φ 1
n

is maximally  L 1
n
-consistent.

Let w be an  L-valuation such that w(p) = n−1
n

. This way w(¬p) = 1
n

and

w(pn−1) = (n− 1)(n−1
n

)− (n− 2) = 1
n
. Thus, w(φ 1

n
) = 1

n
.

Clearly, any  L-valuation w for which w(p) < n−1
n

or w(p) > n−1
n

is such that

w(φ 1
n
) < 1

n
. �

Proposition 107 Let r ∈ Q∩ [0, 1]. We can construct a sentence φ ∈ SL (which

we will denote by φr) that is maximally  Lr-consistent.

Proof. Let r = u
v

and p ∈ L. Let us define φr as follows:

φr =
∨u

φ 1
v

φ 1
v

= ¬p ∧ pv−1. By Proposition 106 φ 1
v

is maximally  L 1
v
-consistent. Thus,∨uφ 1

v
is maximally  Lu

v
-consistent. �

Although obvious, it is worth mentioning that there exists an  L-valuation w

for which w(φr) = 0. Thus, by continuity of fφr we will have an  L-valuation w

such that w(φr) = λ for each λ ∈ [0, r].
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7.3.1 η Iζ and the function LΓ,θ

Let Γ = {φ1, ..., φk} ⊆ SL, θ ∈ SL and η, ζ ∈ [0, 1].

As with Gödel logic we can define an inference relation based on degrees of

truth.

Definition 108 We say that Γ (η, ζ)-implies θ (denoted Γη Iζ θ) if and only if,

for all  L-valuations w, if w(Γ) ≥ η then w(θ) ≥ ζ.4

Definition 109 The function LΓ,θ : [0, 1] −→ [0, 1] is defined as follows, for all

η ∈ [0, 1]:

LΓ,θ(η) = sup{ζ |Γη Iζ θ}.

Next we prove that this supremum is actually attained by a certain  L-valuation.

Proposition 110 Let Γ be  Lη-consistent. There exists an  L-valuation w such

that w(
∧

Γ) ≥ η and w(θ) = LΓ,θ(η) = ζ.

Proof. We can define a decreasing sequence {ζn} whose limit is ζ such that for

all n ∈ N there exists an  L-valuation wn with wn(θ) = ζn and wn(
∧

Γ) ≥ η. We

can characterize every wn by the values it assigns to the propositional variables

in L. We will thus identify wn with the vector ~wn = (wn(p1), ..., wn(pk)).

We need to prove now that there exists an  L-valuation w such that w(θ) = ζ

and w(
∧

Γ) ≥ η.

We can take a convergent subsequence {~w1
nk
} in the first coordinates of {~wn}.

We know such a convergent subsequence needs to exist and converge in the in-

terval [0, 1] by compactness. Next we can pick a convergent subsequence {~w2
nk
}

in the second coordinates of {~w1
nk
}. As before, such subsequence needs to exist

by compactness. We can proceed in the same way for the other coordinates.

The final subsequence, {~w2l

ik
}, will have as limit an  L-valuation ~w for which

w(θ) = ζ and w(
∧

Γ) ≥ η. �

Proposition 111 LΓ,θ is increasing.

Proof. It follows directly from the definition of η Iζ . �

For the next proposition assume that Γ is maximally  Lλ-consistent, λ > 0.

4In [15] we find a consequence relation similar in nature to this one. It could be presented,
in our own terminology and notation, as follows: Γ |=η θ if and only if, for all  L-valuations w
and all η ∈ [0, 1], if w(Γ) ≥ η then w(θ) ≥ η.
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Proposition 112 LΓ,θ is left continuous on [0, λ].

Proof. Let us proceed by reductio ad absurdum by assuming that there exists

η ∈ (0, λ] and ε > 0 such that

LΓ,θ(η)− LΓ,θ(x) > ε

for all x ∈ [0, η).

Let ζ = sup {LΓ,θ(x)|x < η}.
We can define an increasing sequence {ηn} with limit η and a sequence {ζn}

with limit ζ such that for all n ∈ N there exists an  L-valuation wn with wn(
∧

Γ) =

ηn and wn(θ) = ζn. We will identify wn with the vector ~wn = (wn(p1), ..., wn(pk)).

We can take a convergent subsequence {~w1
nk
} in the first coordinates of {~wn}.

We know such a convergent subsequence needs to exist and converge in the in-

terval [0, 1] by compactness. We can proceed in the same way for the other

coordinates.

The final subsequence, {~w2l

ik
}, will have as limit an  L-valuation ~w for which

w(Γ) = η and w(θ) = ζ since LΓ,θ is increasing. Therefore LΓ,θ needs to be

continuous from the left at η. �

Proposition 113 LΓ,θ is of the following form:

LΓ,θ(η) =


a1η + b1 if η ≤ λ1

...

akη + bk if λk−1 < η ≤ λk

with ai, bi, λi ∈ Q and k ∈ N, 1 ≤ i ≤ k.

Proof. Let R = 〈R,+,−, <,=, 0, 1〉.5

The set of pairs

{(x, y) ∈ R2| y = LΓ,θ(x)}

is R-definable (notice that, since R is an elementary extension of the structure

Q = 〈Q,+,−, <,=, 0, 1〉, it is Q-definable too).

The theory of R has quantifier elimination (see for example [29]). Therefore

that the set of pairs

{(x, y) ∈ R2| y = LΓ,θ(x)}
5Here by ’−’ we mean the map given by x −→ −x.
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is given by a finite boolean combination (which reduces to a finite union of inter-

sections by the complement and distributive laws for sets) of sets of the form

{(x, y) ∈ R2|my < nx+ k}

and

{(x, y) ∈ R2|my = nx+ k}

for n,m, k ∈ Z.

Notice that each intersection of sets of such form is convex so, since LΓ,θ is a

function, such intersection has to be a line segment (with coefficients and bounds

in Q).

That LΓ,θ is left continuous follows from Proposition 112. �

In the next section we give a representation theorem for the functions LΓ,θ.

We prove that a function F : [0, 1] −→ [0, 1] is of the form LΓ,θ for some Γ ⊆ SL

and θ ∈ SL if and only if F satisfies the properties stated in Propositions 111

and 113.

7.3.2 Graphs of LΓ,θ

Basic graphs

We define five basic types of graphs.

Proposition 114 (Type 1)

Let r and s be two rational numbers in the interval [0, 1]. We can find Γ and

θ for which LΓ,θ is as follows:

LΓ,θ(η) =

{
s if η ≤ r

1 otherwise

Proof. Let 0 < r = u1

v1
and 0 < s = 1− u2

v2
< 1.

Let Γ = {
∨u1φ 1

v1

}, with φ 1
v1

= ¬p ∧ pv1−1 and p ∈ L. As seen above, Γ is

maximally  Lr-consistent.

On the other hand take φ 1
v2

= ¬q ∧ qv2−1, for q ∈ L, q 6= p. The sentence∨u2φ 1
v2

is maximally  Lu2
v2

-consistent. Thus there is no  L-valuation w such that

w(¬(
∨u2φ 1

v2

)) < 1− u2

v2
= s.
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Thus we can set θ = ¬(
∨u2φ 1

v2

).

Clearly, for Γ and θ thus defined, LΓ,θ is as stated above.

For r = 0 we can take
∧

Γ to be an  L-contradiction. If s = 0 we can take θ

to be an  L-contradiction and, if s = 1, an  L-tautology. �

It is worth remarking the importance of a subclass of this type of graphs;

namely, the graph given when s = 0.

Notice that in the above example Γ is not  L1-consistent. Later on, in order to

prove the representation theorem for the functions LΓ,θ, we will need to appeal

to graphs of this form for  L1-consistent sets of premises. From McNaughton’s

Theorem we can claim that there exist sentences
∧

Γ and θ involving only one

propositional variable –say p ∈ L– with
∧

Γ  L1-consistent such that LΓ,θ(η) = 0

for η ≤ r and LΓ,θ(η) = 1 for η > r, for any r ∈ [0, 1] ∩ Q. To see this consider

f∧
Γ(x) and fθ(x) to be of the following form:

f∧
Γ(x) =


a1x if x ≤ 1+b2

a1+a2

1− (a2x− b2) if 1+b2
a1+a2

< x ≤ 1+b2
a2

a3x− b3 if 1+b2
a2

< x ≤ c

1 otherwise

Here a1, a2, a3, b2, b3 are positive integers and c is a rational number. Other

conditions on these values are that a1( 1+b2
a1+a2

) = 1− (a2( 1+b2
a1+a2

)− b2) = r, 1 + b2 <

a2,6 1− (a2(1+b2
a2

)− b2) = a3(1+b2
a2

)− b3 = 0 and a3 + b3 ≥ 1.

fθ(x) =


0 if x ≤ d1

a4x− b4 if d1 < x ≤ d2

1 otherwise

Here a4, b4 are positive integers and d1, d2 are rational numbers. Another

conditions on these values are a4d1− b4 = 0, a4d2− b4 = 1 and 1+b2
a1+a2

≤ d1 < d2 ≤
1+b2
a2

.

For
∧

Γ and θ of this form the function LΓ,θ will be as stated. To see this notice

that f∧
Γ( 1+b2

a1+a2
) = r, fθ(

1+b2
a1+a2

) = 0 and, for all x ∈ [0, 1] for which f∧
Γ(x) > r

we have that fθ(x) = 1.

Proposition 115 (Type 2)

6Notice that for any r ∈ [0, 1] ∩ Q we can find positive integers a1, a2 and b2 for which the
conditions stated so far hold.
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Let r < s be two rational numbers in the interval [0, 1]. We can find Γ and θ

for which LΓ,θ is as follows:

LΓ,θ(η) =


0 if η ≤ r
η−r
s−r if r < η < s

1 otherwise

Proof. Let 0 < r = u1

v1
< s = u2

v2
.

Take s− r = u2v1−u1v2

v1v2
and define ψ1 and θ as follows:

ψ1 =
∨u2v1−u1v2

φ 1
v1v2

,

θ =
∨v1v2

φ 1
v1v2

.

Here φ 1
v1v2

= ¬p ∧ pv1v2−1, for p ∈ L.

Define ψ2 as follows:

ψ2 =
∨u1

φ 1
v1

.

We take φ 1
v1

to be ¬q ∧ qv1−1, for q ∈ L, q 6= p.

Set Γ = {ψ1∨ψ2}.
LΓ,θ is as stated above. To see this notice that, since ψ2 is maximally  Lr-

consistent, LΓ,θ(x) = 0 for all x ∈ [0, r] and that any  L-valuation w for which

w(ψ1) = s− r (its maximal consistency) is such that w(θ) = 1.

If r = 0 then we can dispense with ψ2 and take Γ = {ψ1}. �

As with Type 1 McNaughton’s Theorem guarantees the existence of
∧

Γ  L1-

consistent and θ such that LΓ,θ is as above. To see this consider φ(p) and θ(p)

(with p ∈ L) for which fφ(x) and fθ(x) are of the following form:

fφ(x) =

{
bx if x ≤ 1

b

1 otherwise

fθ(x) =

{
ax if x ≤ 1

a

1 otherwise

Here a, b ∈ N and a
b

= 1
s−r . Notice that L{φ},θ(η) = aη

b
for all η ≤ b

a
.



CHAPTER 7. FUZZY LOGICS 103

We can then set Γ = {φ∨ψ2}, where ψ2 is as in the previous example:

ψ2 =
∨u1

φ 1
v1

,

with φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L, q 6= p.

LΓ,θ will be as stated, with Γ  L1-consistent.

Proposition 116 (Type 3)

Let r and s be two rational numbers in the interval [0, 1]. We can define Γ

and θ for which LΓ,θ is as follows:

LΓ,θ(η) =

{
0 if η ≤ r
s(η−r)

1−r otherwise

Proof. Let r = u1

v1
and s = u2

v2
. We have to distinguish two possible cases here:

Case 1. s
1−r ≤ 1.

Consider s
1−r = u2v1

v2(v1−u1)
.

We first define ψ1 and θ as follows:

ψ1 =
∨v2(v1−u1)

φ 1
v2(v1−u1)

,

θ =
∨u2v1

φ 1
v2(v1−u1)

.

Here φ 1
v2(v1−u1)

= ¬p ∧ pv2(v1−u1)−1, for p ∈ L.

Let us now define ψ2 for r > 0 as follows:

ψ2 =
∨u1

φ 1
v1

.

In this case φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L, q 6= p.

Set Γ = {ψ1∨ψ2}.
Clearly LΓ,θ is as mentioned above.

Notice that if r = 0 then we can dispense with ψ2 and set Γ = {ψ1} to get

LΓ,θ as mentioned.

Case 2. s
1−r > 1.
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Consider 1−r
s

= v2(v1−u1)
u2v1

.

We now define ψ1 and θ in the following way:

ψ1 =
∨v2(v1−u1)

φ 1
u2v1

,

θ =
∨u2v1

φ 1
u2v1

with φ 1
u2v1

= ¬p ∧ pu2v1−1, for p ∈ L.

If r > 0 define ψ2 as above and set Γ = {ψ1∨ψ2}. LΓ,θ will be as stated.

As before, if r = 0 then we set Γ = {ψ1}. �

Proposition 117 (Type 4)

Let r < s be two rational numbers in the interval [0, 1]. We can define Γ and

θ for which LΓ,θ(η) = (s− r)η + r.

Proof. Let r = u1

v1
< s = u2

v2
. Take s − r = u2v1−u1v2

v1v2
and define ψ and θ1 as

follows:

ψ =
∨v1v2

φ 1
v1v2

,

θ1 =
∨u2v1−u1v2

φ 1
v1v2

,

where φ 1
v1v2

= ¬p ∧ pv1v2−1, for p ∈ L.

Let us define θ2 as follows:

θ2 = ¬(
∨u1

φ 1
v1

).

Here φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L, q 6= p.

Set θ = θ1∨θ2 and Γ = {ψ}. The function LΓ,θ will be as stated above.

If r = 0 then we set θ = θ1. �

Proposition 118 (Type 5)

Let r and s be two rational numbers in the interval [0, 1]. We can define Γ

and θ for which LΓ,θ is as follows:
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LΓ,θ(η) =

{
η(1−r

s
) + r if η ≤ s

1 otherwise

Proof. Let 0 < r = u1

v1
and s = u2

v2
. We have to distinguish two possible cases:

Case 1. 1−r
s
> 1.

Consider s
1−r = u2v1

v2(v1−u1)
and define ψ and θ1 as follows:

ψ =
∨u2v1

φ 1
v2(v1−u1)

,

θ1 =
∨v2(v1−u1)

φ 1
v2(v1−u1)

,

with φ 1
v2(v1−u1)

= ¬p ∧ pv2(v1−u1)−1, for p ∈ L.

On the other hand define θ2 as follows:

θ2 = ¬(
∨u1

φ 1
v1

),

with φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L, q 6= p.

Set θ = θ1∨θ2 and Γ = {ψ}. The function LΓ,θ will be as stated above.

If r = 0 then we can set θ = θ1.

As with Type 1 and Type 2, McNaughton’s Theorem guarantees the existence

of sentences
∧

Γ and θ in one variable (say p ∈ L), with
∧

Γ  L1-consistent, such

that LΓ,θ is as above. To see this consider φ and ψ for which fφ(x) and fψ(x) are

as follows:

fφ(x) =

{
bx if x ≤ 1

b

1 otherwise

fψ(x) =

{
ax if x ≤ 1

a

1 otherwise

Here a, b ∈ N and a
b

= 1−r
s

.
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Set Γ = {φ} and θ = {ψ∨θ2}, where

θ2 = ¬(
∨u1

φ 1
v1

)

and φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L, q 6= p.

Clearly LΓ,θ will be as stated, with Γ  L1-consistent.

Again, if r = 0 then we can set θ = ψ.

Case 2. 1−r
s
≤ 1.

Consider 1−r
s

= v2(v1−u1)
u2v1

and define ψ and θ1 as follows:

ψ =
∨u2v1

φ 1
u2v1

,

θ1 =
∨v2(v1−u1)

φ 1
u2v1

,

where φ 1
u2v1

= ¬p ∧ pu2v1−1, for p ∈ L.

Define θ2 as in Case 1 and set θ = θ1∨θ2 and Γ = {ψ}. The function LΓ,θ

will be as desired.

For r = 0 we dispense again with θ2. �

Compound graphs

Let L1, L2 be two disjoint languages and SL1, SL2 their respective sets of

sentences. Take Γ1 ⊆ SL1, Γ2 ⊆ SL2 and θ1 ∈ SL1, θ2 ∈ SL2. Assume that

Γ = Γ1 ∪ Γ2 is maximally  Lλ-consistent.

Proposition 119 max{LΓ1,θ1(η),LΓ2,θ2(η)} = LΓ1∪Γ2,θ1∨θ2(η) for all η ∈ [0, 1].

Proof. It follows trivially given the way the connective ∨ is defined. �

Proposition 120 min{LΓ1,θ1(η),LΓ2,θ2(η)} = LΓ1∪Γ2,θ1∧θ2(η) for all η ∈ [0, λ].

Proof. It follows trivially given the definition of the connective ∧. �

We can extend these propositions to any finite collection of sets of sentences

Γ1 ⊆ SL1, ...,Γk ⊆ SLk and θ1 ∈ SL1, ..., θk ∈ SLk, for some k ∈ N, with

L1, ..., Lk a collection of pairwise disjoint languages.
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Theorem 121 The function F : [0, 1] −→ [0, 1] is of the form LΓ,θ for some

Γ ⊆ SL and θ ∈ SL if and only if F is an increasing function of the following

form:

F(x) =


a1x+ b1 if x ≤ λ1

...

akx+ bk if λk−1 < x ≤ λk

with ai, bi, λi ∈ Q and k ∈ N, i ∈ {1, ..., k}.

Proof. If F : [0, 1] −→ [0, 1] is of the form LΓ,θ for some Γ ⊆ SL and θ ∈ SL then

we know, by Propositions 111 and 113, that F will be an increasing function of

the form stated above.

Let us prove now the left implication.

Let F : [0, 1]→ [0, 1] be as stated.

We will denote the line segment given by aix+ bi and λi−1 < x ≤ λi by li, for

i ∈ {2, ..., k} (l1 will be the line segment given by a1x+ b1 and x ≤ λ1).

Let us define Γ and θ for which LΓ,θ(η) = F(η) for all η ∈ [0, 1].

First, let li be a line segment of F , i ∈ {1, ..., k} (without loss of generality

we can assume that i 6= 1). We can define Γi ⊆ SL  L1-consistent and θi ∈ SL for

which LΓi,θi is as follows:

LΓi,θi(x) =


aiλi−1 + bi if x ≤ λi−1

aix+ bi if λi−1 < x ≤ λi

1 otherwise

To see this set

LΓi,θi(η) = max{L∆1,ψ1(η),max{L∆2,ψ2(η),L∆3,ψ3(η)}}

for all η ∈ [0, 1], with ∆j ⊆ SLj  L1-consistent and ψj ∈ SLj for all j ∈ {1, 2, 3},
where L1, L2, L3 are pairwise disjoint languages.

L∆1,ψ1 and L∆2,ψ2 are of Type 1 :

L∆1,ψ1(x) =

{
0 if x ≤ λi

1 otherwise
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L∆2,ψ2(x) = aiλi−1 + bi for all x ∈ [0, 1]

The nature of the straight line aix + bi will determine the type of graph of

L∆3,ψ3 . We will choose ∆3 and ψ3 such that the graph of L∆3,ψ3 contains the

straight segment aix + bi, for λi−1 < x ≤ λi. That L∆3,ψ3 will be of one of the

types described in the previous subsection is clear.

It can easily be seen that

F(η) = L⋃
Γi,

∧
θi(η) = min{LΓi,θi(η) | i ∈ {1, ..., k}}

for all η ∈ [0, 1], with Γ1 ⊆ SL1, ...,Γk ⊆ SLk, θ1 ∈ SL1, ..., θk ∈ SLk and

L1, ..., Lk a pairwise disjoint collection of languages. �



Chapter 8

Conclusion

In Chapter 2 we have presented the notion of η-coherence as a measure of

consistency, which we argue improves on the inconsistency measure given by

Schotch and Jennings in [45], and have proved its mathematical equivalence to

η-consistency, with the advantage over the latter that it rests entirely within

propositional calculus without involving probabilities.

In Chapter 3 we have studied the consequence relation η.ζ as a model to

reasoning by a rational agent holding possibly inconsistent beliefs. We have found

an equivalent to η.ζ (for any values η, ζ ∈ [0, 1]) within classical propositional logic

and have given a representation theorem for the functions of the form FΓ,θ.

In Chapter 4 we have compared η.ζ with other consequence relations in the

literature with respect to distinct criteria. One of these criteria was consistency.

We have proved that for certain values η, ζ the consequence relation η.ζ yields

consistent sets of consequences and that on those grounds it behaves pretty well

with respect to other well known consequence relations. We have seen also that for

particular values η, ζ our inference relation η.ζ satisfies some desirable structural

rules.

In Chapter 5 we have defined new inference relations very much inspired by
η.ζ on the basis that distinct sentences in our belief base were allowed distinct

probability thresholds. We have first defined a consequence relation to deal with

belief bases given by sentences of the form w(φ) ≥ η (for φ ∈ SL and η ∈ [0, 1],

with the intended meaning ’the probability of φ is at least η’) and have given a

propositional equivalent to it, analogous to that for η.ζ in Chapter 3. Next we

extended the language and defined a new consequence relation for belief bases

109
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given by boolean combinations of sentences of the form w(φ) ≥ η and gave a

proof system for it.

In Chapter 6 we have considered countably infinite propositional languages

and have studied some properties of η.ζ when considering possibly infinite sets of

premises. In particular we have given a representation theorem for the functions

of the form FΓ,θ with Γ possibly infinite.

In Chapter 7 we have defined consequence relations similar in nature to η.ζ

in terms of degrees of truth (truth values) rather than degrees of belief (prob-

abilities). We have done so for Gödel and  Lukasiewicz logics and have given

representation theorems for the functions GΓ,θ and LΓ,θ (analogous to FΓ,θ in our

probabilistic approach).
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