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Abstract

We give a proof of an inequality concerning the expected values of
row-sum and column-sum products in Boolean matrices and indicate
how it can be applied to establish a natural analogy principle in Pure
Inductive Logic. A generalisation of this result to higher dimension
Boolean matrices is then conjectured.
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Introduction

The aim of this paper is to give a proof of a matrix inequality which arises in investigations
of the role of analogy in inductive logic. The background and specific details can be found
in [3], [4] respectively; here we merely briefly outline the context.

Consider an agent who aims to assigns probability values to sentences involving potentially
infinite number of individuals a1, a2, . . . in a strictly rational manner. In other words, an
agent who wishes to pick a rational probability functions on the set of sentences of some
language, involving these individuals. It is usually assumed that in a situation when the
agent knows nothing about these individuals, his/her probabilities should be independent
of the particular choice of individuals featuring in a sentence. We call this property of
probability functions Constant Exchangeability, Ex.

Amongst other arguably rational principles there is a principle of analogy, called the
Counterpart Principle, CP, (see [2] or [3]), which says that the agent should not give
less probability to a sentence in the event of receiving evidence consisting of that same
sentence except that some individuals and/or relations in it are replaced with new ones.
Under another very natural assumption of Pure Inductive Logic, the Principle of Language
Invariance, LI, CP follows from Ex.

This leads to the question of whether allowing two sentences in the evidence, both of
which are obtained by replacing some individuals and/or relations in the original sentence
by different ones, should also not decrease the probability the agent gives to the sentence.
A basic case of this is the question whether for some binary relation R of the language the
conditional probability of R(a1, a2) given both R(a1, a3) and R(a4, a2) must, under the
assumption of Ex and LI, be at least as great as the unconditional probability of R(a1, a2).

It turns out that this basic case is a key to a much more general result, and that to prove
this basic case we need to show the following property of square matrices with 0,1 entries
(i.e. Boolean matrices). Namely that the expected value of the product of the sum of
entries in a row and in a column given that the entry at their intersection is 1, is bigger or
equal to the expected value of the product of the sum of entries in a row and in a column
given that the entry at their intersection is 0. We prove this result in the next section, after
which we conjecture a corresponding inequality for higher dimension Boolean matrices.

The Inequality

Let (ei,j) be an N ×N matrix with entries 0 or 1 and such that N2 >
∑

i,j ei,j = T > 0.
Let Ai =

∑
r ei,r, Bj =

∑
s es,j . Then the expected value of the product of the sum of

entries in a row and in a column given that the entry at their intersection is 1 or 0 are,∑
i,j ei,jAiBj

T
,

T 2 −
∑

i,j ei,jAiBj

N2 − T

respectively, since ∑
i,j

AiBj = T 2.
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Hence the above claimed result holds by virtue of the following theorem:

Theorem 1. Let (ei,j) be an N ×N {0, 1}-matrix such that
∑

i,j ei,j = T > 0. Then∑
i,j

ei,jAiBj ≥ T 3N−2 (1)

where Ai =
∑

r ei,r, Bj =
∑

s es,j.

Proof. Let M = T/N . We may assume that M ≥ 1 otherwise (ei,j) will have to have a
zero column and a zero row and we can simply remove these as they would only make the
right hand side of (1) smaller.

It is enough to show that∑
i,j

(
MN−1(Ai −M)2 + MN−1(Bj −M)2 + ei,j(Ai −M)(Bj −M)

)
≥ 0 (2)

since multiplying this out and summing it with the use of∑
i,j

MN−1A2
i =

∑
i

MA2
i =

∑
i,j

ei,jAiM,

∑
i,j

MN−1B2
j =

∑
j

MB2
j =

∑
i,j

ei,jBjM,

∑
i,j

−2MN−1AiM = −2M2T = −2M3N =
∑
i,j

−2MN−1BjM,

∑
i,j

MN−1M2 = M3N =
∑
i,j

ei,jM
2

reduces (2) to ∑
i,j

ei,jAiBj ≥ NM3,

which is exactly what we want.

To show (2) let Xi = Ai −M,Yj = Bj −M . Substituting this in (2) and mutiplying it by
2, we obtain ∑

i,j

(
2MN−1X2

i + 2MN−1Y 2
j + 2ei,jXiYj

)
≥ 0. (3)

Adding and substracting ∑
i,j

ei,j(X
2
i + Y 2

j )

to the left hand side of (3) yields∑
i,j

(
X2

i (2MN−1 − ei,j) + Y 2
j (2MN−1 − ei,j) + ei,j(Xi + Yj)

2
)
≥ 0. (4)
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Upon noting that ∑
i,j

2MN−1X2
i =

∑
i

2MX2
i ,∑

i,j

ei,jX
2
i =

∑
i

AiX
2
i =

∑
i

X2
i (Xi + M)

(and similarly for j), (4) simplifies to give∑
i

X2
i (M −Xi) +

∑
j

Y 2
j (M − Yj) +

∑
i,j

ei,j(Xi + Yj)
2 ≥ 0 . (5)

To make the proof easier to follow we shall at this point first prove the result in the special
case when each Bj ≤ 2M , equivalently Yj ≤M , so

Y 2
j (M − Yj) ≥ 0.

Using this fact and the fact that for a fixed j with Bj 6= 0 (that is, Yj > −M , equivalently
ei,j = 1 for some i) we have

∑
i ei,jB

−1
j = 1, to show (5) it is enough to show that∑

i

X2
i (M −Xi) +

∑
i,j:Yj<0,

ei,j=1

ei,jY
2
j (M − Yj)B

−1
j +

∑
i,j

ei,j(Xi + Yj)
2 ≥ 0 . (6)

For a fixed i consider

MX2
i −X3

i +
∑

j:Yj<0

ei,j=1

ei,jY
2
j (M − Yj)B

−1
j +

∑
j

ei,j(Xi + Yj)
2 ≥ 0. (7)

To show (6), it clearly suffices to show that (7) holds for each i. This is obvious when i
is such that Xi ≤ M so consider i with Xi > M . Keeping such an i fixed, we will write∑

ei,j=1 Yj for
∑

j ei,jYj etc. Since we have∑
j

ei,jX
2
i =

∑
ei,j=1

X2
i = (M + Xi)X

2
i ,

(7) is equivalent to

2MX2
i +

∑
ei,j=1

Yj<0

Y 2
j (M − Yj)B

−1
j +

∑
ei,j=1

(
2XiYj + Y 2

j

)
≥ 0.

Since ∑
ei,j=1

Yj ≥
∑

ei,j=1

Yj<0

Yj

∑
ei,j=1

Y 2
j ≥

∑
ei,j=1

Yj<0

Y 2
j ,

and Xi > M > 0 it suffices to show that

2MX2
i +

∑
ei,j=1

Yj<0

2XiYj +
∑

ei,j=1

Yj<0

Y 2
j +

∑
ei,j=1

Yj<0

Y 2
j (M − Yj)B

−1
j ≥ 0. (8)
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If ∑
ei,j=1

Yj<0

Yj ≥ −MXi

then for the only possibly negative factor in (8),∑
ei,j=1

Yj<0

2XiYj ≥ −2MX2
i (9)

and this cancels with the first term in (8) to produce a non-negative sum.

So assume from now on that ∑
ei,j=1

Yj<0

Yj < −MXi. (10)

Using Hölder’s inequality and the fact that∑
ei,j=1

Yj<0

1 ≤ M + Xi ,

we can see that

∑
ei,j=1

Yj<0

Y 2
j ≥

(∑
ei,j=1

Yj<0

Yj

)2

M + Xi
. (11)

Since MB−1j > 1 when Yj < 0 and ei,j = 1, we also have

∑
ei,j=1

Yj<0

Y 2
j MB−1j ≥

(∑
ei,j=1

Yj<0

Yj

)2

M + Xi
. (12)

Furthermore, using Chebychev’s sum inequality and (11),

−
∑

ei,j=1

Yj<0

Y 3
j =

∑
ei,j=1

Yj<0

Y 2
j (̧− Yj) ≥

(∑
ei,j=1

Yj<0

Y 2
j

)(
−
∑

ei,j=1

Yj<0

Yj

)
(M + Xi)

≥ −

(∑
ei,j=1

Yj<0

Yj

)3

(M + Xi)2
.

so since Bj ≤M when Yj < 0 and ei,j = 1, B−1j > M−1 and

−
∑

ei,j=1

Yj<0

Y 3
j B
−1
j ≥ −

(∑
ei,j=1

Yj<0

Yj

)3

M(M + Xi)2
. (13)
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It now follows from (11), (12) and (13) that to show (8) it suffices to show that

2MX2
i + 2Xi

 ∑
ei,j=1

Yj<0

Yj

+

2

(∑
ei,j=1

Yj<0

Yj

)2

(M + Xi)
−

(∑
ei,j=1

Yj<0

Yj

)3

M(M + Xi)2
≥ 0. (14)

Putting

Z =

−
∑

ei,j=1

Yj<0

Yj

M + Xi

this amounts to showing that

2M2X2
i

M + Xi
− 2MXiZ + 2MZ2 + Z3 ≥ 0 . (15)

Noting that −Yj ≤ M − 1 when ei,j = 1 (since Yj = Bj −M ≥ ei,j −M), we have from
(10) that

MXi

(Xi + M)
≤ Z ≤M − 1 . (16)

Inequality (15) does hold at the two extreme points MXi(M + Xi)
−1 and M − 1 in (16)

so it is a matter of checking that it holds between them too. The right hand side of
(15) is a cubic polynomial, so it suffices to check that if its local minimum lies between
MXi(M + Xi)

−1 and M − 1 then then its value at this point is non-negative.

The local minimum occurs at

Z =
−2M +

√
4M2 + 6MXi

3

and this point is between the limits given in (16) just when Xi ≤ −M/2 or

2M ≤ Xi ≤ 7M/2 + 3/(2M)− 5 ≤ 4M. (17)

We have assumed that Xi ≥M so only (17) needs to be considered.

Following multiplying out and squaring to remove the square root it can be seen that for
(15) to hold at this local minimum point reduces to the requirement that

324M4 + 972M3Xi + 1161M2X2
i − 216MX3

i ≥ 0.

This does hold when 2M ≤ Xi ≤ 4M since then the only negative term is −216MX3
i and

1161M2X2
i − 216MX3

i ≥MX2
i (1161M − 216 · (4M)) > 0.

The result in the special case that each Bj ≤ 2M now follows.

We now turn to the general case where some of the Bj are greater than 2M , equivalently
some of the Yj are greater than M . For this we consider
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∑
ei,j=1

ei,jA
−1
i X2

i (M −Xi) +
∑

ei,j=1

ei,jB
−1
j Y 2

j (M − Yj) +
∑

ei,j=1

ei,j(Xi + Yj)
2 ≥ 0 (18)

in place of (5), observing again that A−1i and B−1j are well defined when ei,j = 1. It suffices

to show (18) since the left hand side equals that of (5) except that the terms X2
i (M −Xi)

or Y 2
j (M − Yj) (equal to 2M3) are missing when Ai = 0 or Bj = 0 respectively. In other

words we aim to show∑
ei,j=1

ei,j
(
A−1i X2

i (M −Xi) + B−1j Y 2
j (M − Yj) + (Xi + Yj)

2
)
≥ 0 . (19)

Define

f(i, j) =

{
0 if Xi ≤M,
1 if Xi > M.

f̃(i, j) = 1− f(i, j) =

{
1 if Xi ≤M,
0 if Xi > M.

g(i, j) =

{
1 if Yj ≤M,
0 if Yj > M.

g̃(i, j) = 1− g(i, j) =

{
0 if Yj ≤M,
1 if Yj > M.

h(i, j) =


2−1 if Xi ≤M and Yj ≤M,
0 if Xi ≤M and Yj > M,
1 if Xi > M and Yj ≤M,
Xi(Xi + Yj)

−1 if Xi > M and Yj > M.

h̃(i, j) = 1− h(i, j) =


2−1 if Xi ≤M and Yj ≤M,
1 if Xi ≤M and Yj > M,
0 if Xi > M and Yj ≤M,
Yi(Xi + Yj)

−1 if Xi > M and Yj > M.

Then the left hand side of (19) is the sum of∑
ei,j=1

ei,j
(
f(i, j)A−1i X2

i (M −Xi) + g(i, j)B−1j Y 2
j (M − Yj) + h(i, j)(Xi + Yj)

2
)

(20)

and∑
ei,j=1

ei,j

(
f̃(i, j)A−1i X2

i (M −Xi) + g̃(i, j)B−1j Y 2
j (M − Yj) + h̃(i, j)(Xi + Yj)

2
)
. (21)

So it suffices to show that (20) is non-negative for any fixed i

For a fixed i such that Xi ≤M , (20) is∑
ei,j=1

Yj≤M

2−1(Xi + Yj)
2 +

∑
ei,j=1

Yj≤M

Y 2
j (M − Yj)B

−1
j (22)
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and for Xi > M it is∑
ei,j=1

Yj≤M

(Xi + Yj)
2 +

∑
ei,j=1

Yj>M

Xi(Xi + Yj) + X2
i (M −Xi) +

∑
ei,j=1

Yj≤M

Y 2
j (M − Yj)B

−1
j . (23)

Similarly for a fixed j such that Yj ≤M , (21) is∑
ei,j=1

Xi≤M

2−1(Xi + Yj)
2 +

∑
ei,j=1

Xi≤M

X2
i (M −Xi)A

−1
i (24)

and for Yj > M it is∑
ei,j=1

Xi≤M

(Xi + Yj)
2 +

∑
ei,j=1

Xi>M

Yj(Xi + Yj) + Y 2
j (M − Yj) +

∑
ei,j=1

Xi≤M

X2
i (M −Xi)A

−1
i . (25)

Thus it is enough (by symmetry) to show that both (22) and (23) are non-negative.

For (22) this is clear so we assume now that Xi > M and show it for (23). Expanding and
simplifying (23) gives

(M + Xi)X
2
i +

∑
ei,j=1

Yj≤M

2XiYj +
∑

ei,j=1

Yj≤M

Y 2
j

+
∑

ei,j=1

Yj>M

XiYj + MX2
i −X3

i +
∑

ei,j=1

Yj≤M

Y 2
j (M − Yj)B

−1
j .

which simplifies further to

2MX2
i +

∑
ei,j=1

Yj≤M

2XiYj +
∑

ei,j=1

Yj≤M

Y 2
j +

∑
ei,j=1

Yj>M

XiYj +
∑

ei,j=1

Yj≤M

Y 2
j (M − Yj)B

−1
j . (26)

In this sum the only potentially negative term is the second one,∑
ei,j=1

Yj≤M

2XiYj . (27)

If ∑
ei,j=1

Yj≤M

Yj ≥ −MXi (28)

then (27) is canceled out by the first term in (26), so we may henceforth assume that (28)
does not hold. Notice that we now have

MXi < −
∑

ei,j=1

Yj≤M

Yj ≤ −
∑

ei,j=1

Yj<0

Yj ≤ (M + Xi)(M − 1) .
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Clearly to show that the sum in (26) is non-negative it is enough to show that the following
sum is non-negative:

2MX2
i +

∑
ei,j=1

Yj<0

2XiYj +
∑

ei,j=1

Yj<0

Y 2
j +

∑
ei,j=1

Yj<0

Y 2
j (M − Yj)B

−1
j . (29)

But that follows, as required, exactly as in the special case of (8) considered earlier.

For an N ×N matrix (ei,j) let

‖(ei,j)‖=
∑
i,j

|ei,j |.

Then a restatement of Theorem 1 gives:

Corollary 2. For an N ×N {0, 1}-matrix E,

N2 ‖EETE ‖≥‖E ‖3 .

A Conjecture

The main theorem of this paper suggests a natural generalization which we will leave as a
conjecture since, apart from the case n = 2 proved in this paper, it is not relevant to our
current focus on modeling analogical reasoning in Pure Inductive Logic.

To set the scene let D be an Nn {0, 1} matrix, that is

D : {1, 2, . . . , N}n → {0, 1}.

For ~a = 〈a1, a2, . . . , an〉 ∈ {1, 2, . . . , N}n (henceforth vectors will always come from this
set) and 1 ≤ i ≤ n let

~a[i] = {~b | bi = ai}, A(~a, i) =
∑

~b∈~a[i]

D(~b).

Conjecture

∑
~a

D(~a)

n∏
i=1

A(~a, i) ≥ N−n
(∑

~a

D(~a)
)n+1

.

Putting this another way it amounts to the assertion that the expected value of

n∏
i=1

A(~a, i) (30)

given that D(~a) = 1 (i.e. D of the point of intersection of the sets ~a[i] for i = 1, 2, . . . , n is
1) should be at least the expected value of (30) without this restriction on ~a.
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