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Abstract

The main purpose of this note is to make accessible a prove of
an unpublished result by Haim Gaifman that, assuming Regularity, a
probability function satisfies Reichenbach’s Principle just and only if
every point in Dyq is a support point of its de Finetti prior.

The following principle has been attributed to Hans Reichenbach after a
suggestion by Hilary Putnam, see [2, p120]:

Reichenbach’s Axiom, RA

Let ay,, () fori=1,2,3,... be an infinite sequence of atoms of L.* Then for
a;(z) an atom of L,

Tim (w (aj<an+1>| /\ahxai)) - #) —0 (1)

i=1

where uj(n) = [{i|1 <i<nand h; = j}|

IFor an explanation of the notation etc. used in this paper see, for example, [3]. Note
however that D, in that paper is denoted Doq in this current paper.
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Informally then this principle asserts that as information of the atoms sat-
isfied by the aq,as,...,ay,,... grows so w should treat this information like
a statistical sample giving a value to the probability that the next, n 4 1’st,
case revealed will be o(a,+1) which gets arbitrarily close to the frequency
of past instances of a;(a;).

The following theorem which was stated by Gaifman in [1] though its proof,
which it was said would be given in [2], never appeared (due to the inordinate
time lag between these two volumes and Gaifman developing new interests
in the meantime).

Theorem 1 Let w satisfy Reg. Then w satisfies RA if and only if every
point in Dag is a support point of the de Finetti prior p of w.

Proof First assume that every point in Dy is a support point of . By de
Finetti’s Theorem it is enough to show that if n is large and mq, ma, ..., Mo €
N with sum n then

Ty,
fmq (wj —m;/n) H?:l ;" dp
2 m;
szq Hzil z; " dp

is close to zero. We first need to introduce some notation and derive a number
of estimates.

(2)

For small 6 > 0 set

FEs = {f€D2q|ZL’Z’ >0, i:1,2,...,2q},

Es(C) = {7 € N5po(C) | Fy € EsIN € [0,1], 2 = Ac+ (1 — Ny}
Notice that for every point d e Es(¢) and ¢ = 1,2,...,27 if ¢; < 0 then
¢; < d;. Also there is a fixed ¢ > 0 such that for each ¢ € Dy, there is a

d € E5(?) such that Es(é) contains the neighbourhood Ng(alﬁ).2 Hence there
is some ¢ > 0 such that

Ve € Do u(E5(0) = ¢, (3)

2]t can be checked that a suitable choice, for § small, is £ = 279738 when d is given
by d; = ¢; — (29 — 1)279725 for some 4 for which ¢; = max{c;|j = 1,2,...,27} and
dj = ¢; + 279726 for the remaining 2¢ — 1 coordinates.



since if not we could find a sequence of points ¢* € Dy, with limit point &
such that p(Ng(¢*)) — 0 whilst, by the assumption on the support points of

ts 1(Nej2(©)) > 0 with Ngjo(€)) C Ne(c*)) for k large enough.

For d € E5(¢) we have that

249

Z(Ci log(¢;) — ¢;log(d;)) =
— Z cilog(1+ (d; — ¢;)e;t) + Z ¢;log(c;) — cilog(d;) < 29716 (4)

;>0 ci<d

since if ¢; < § then ¢; < d; and ¢;log(c;) — ¢;log(d;) < 0 whilst for § < ¢; in
view of |d; — ¢;| < §/2

—c;ilog(1+4 (d; — ¢;)c; ) < e;log(2),
which is less or equal to v/dlog(2) < 2v/4 in the case of ¢; <

¢ >0
—cilog(1+ (di — ¢i)e; ') < —cilog(1 — V6/2) < 5o Vs /2 < 2V,

0, and when

From (4) we now have that for d € Ej(c),

24 24
[T =e> T e (5)
=1 =1

We now claim that for small € > 0 there exists 7 > 0 such that whenever

& d € Dy and |d — & > € then
24

Z(Ci log(¢;) — ¢;log(d;)) > .

i=1
For if not, then since ), ¢; log(x;) takes its strict maximum on Dy, at & = ¢,
there would be &, d, c*, d* € Dy such that |d* — &*| > € for each k, c* — ¢,

d* = d but s

Z(Cf log(cf) — ¢ log(d]")) 0.

i=1



In this case |d — & > € but

24 24
Z cilog(c;) = Z ¢ilog(d
i=1 i=1

contradiction. It follows that the required 7 exists and we can conclude that

24 24
H di <e” H ¢’ (6)
i=1 i=1

whenever &,d € Dy, |d — 7] > e.

We now return to the proof that (2) is close to zero. Given small € > 0 let
7 >0 be as in (6). Now pick small 4 > 0 such that

2715 < 7 €. (7)

Then putting ¢; = m;/n for j =1,2,...,29,

fDQq L _Cj) H? Lz dp
fDQq i= 1552 tdp

_ fNa)xj—C')Hz T dp (8)

In a)Hzl idp + fﬁNaHz Lz dp
fﬁNeaxJ Cj)Hzl ;" dp

fNEE')Hzl i dlu + fﬁN(E)Hzl i ,U

Concerning (8) we have that

fﬁNeé')Hz 1 < J;N(E')Hz 1 Z;
fN é’)Hz 1IZ - fE(;(E')Hz 1%

—nT nCz
f—|Ne @ Hz 1 G
2q9+1 nc
e -n fHZ 1 2 ! du

—nT

by (5), (6),
fEa(E')

S (10)



which by (7) is small for large n. Hence (8) is close to

fNE(a(xj —¢) H? oy dp
24 m;
fNE(E') [Tz =" dp

which is between —e and € since |z; — ¢;| < € over N,(c).

Clearly the inequalities already given in (10) also show that (9) is small for
large n and the required result follows.

Turning to the other direction of the theorem suppose that w satisfies Reg
and not every point of Dy, is a support point of the de Finetti prior p of w.
We shall sketch a proof that in this case RA fails in general, even when the
sequence u;(n)/n converges.

Since the set of non-support points of u form an open set and w satisfies Reg
we can ﬁnd points b d € Dyy with no zero coordinates with b a support point
of p and d a non-support point. By considering points on the line joining
g, d we may assume that bis close to d and, by considering a nearest support
point to d and then moving a distance in its direction if necessary, that no
support point is as close (or closer) to d than b. Let r = |b— d| < s/2 where
s = min{b;, d;|i = 1,2,. 2‘1} and let € be small. In the diagram below let
¢ be on the line joining b d distance 2¢ from b let the plane P be normal to
this line distance ¢ from b and let P+ be the region on the same side of P as
¢, P~ its complement. Note that 2r < s < ¢; for each i.

d
T
P+
» C
P
€
3 P



Then

24 24

Z(Ci log(c;) — cilog(b;)) = Z —cilog (1 + o ; CZ))
- ; (bi —¢;) + (b 2_;’)2 +0(e%)
= Z (b ;jiﬁ +O() <357 (11)

since S0 by =30 ¢ = 1.

On the other hand let # € P* with |¥ — cf| > r and suppose for the moment
that |x; — ¢;| < ¢; for each i. The distance from & to ¢ must be at least v/2re
SO

24 24

Z(Ci log(¢;) — ¢;log(x;)) = Z —¢;log (1 i (xZC;CZ))
= i=1 i
24
_ (z; — i) (25— )
= ; (zz Cz) ‘l’ 2Ci 3CZ2 _l_ .
_ i (xl - Ci)2 . (LUZ — Ci)3 "
- — 202' 3022 e
2
= Z % > 2725 e (12)

i=1 g

Furthermore the inequality (12) also holds for any # € P with |Z — d| > r
since the function Zil(cZ log(c;)—c;log(x;)) is increasing along straight lines
emanating from ¢ As in the first half of this proof, using (11), (12) it now

follows that if
<u1(n) us(n) qu(n)> Lz

3 gy

n n n

as n — oo then

f]D)qu.yHZ 1% d,u fp—%Hz 1%
f]D)zq 1= 1 &z d,u fP i= 1 Ty d:u




tends to 0 as n — 0o. But even assuming the limit e; of the left hand side
of (13) exists for j = 1,2,...,2% then, because of the equality with the right
hand side of (13), would have to have &€ € P~ so € # ¢. Either way RA fails,
as required. |

In fact the forward direction of the above proof has shown an ostensibly
stronger result, that under the given assumptions RA holds uniformly. Pre-
cisely:

Corollary 2 Let w satisfy Reg and suppose that every point in D is a
support point of the de Finetti Prior p of w. Then for € > 0 there is k € N
such that for any sequence oy, (x) of atoms of L and n > k

w <aj<an+1>| /\ahxa») - )

i=1

<e,

where u;(n) = [{i|1 <i<n and h; = j}|.

We have assumed in Theorem 1 that w satisfies Reg. Clearly this is necessary
for RA to make sense in general since without Reg we can have the conditional
in (1) undefined. Notwithstanding, in [1] Gaifman states a generalization of
Theorem 1 appropriate to this case.

If the probability function w satisfies RA and Reg then it satisfies an analo-
gous version of RA for consistent non-tautological #(a;) € QFSL. Namely

=, (w (9%0 | /\96“‘“)) i %) -

where u(n) = > " | ¢. To see this notice that the map
T € Doy — wf(é’(al))

is continuous and onto [0, 1] so for u the de Finetti prior of w the measure v
on D, defined by

v(A) = p{Z [ (wz(0(a1)), 1 — wz(0(a1))) € A}



has every point in Dy as a support point and by the IP property of the wz
we have

n

/11»2 Wiz, 20) <Z:/\1 R?(ai)) dv((z1,22)) = /11»2 a2 dv((xy, x5))
= /ng wz (Z\l Hﬁi(ai)> du(x)

where ny = )", €, ng = n —ny. The required conclusion now follows by
applying Theorem 1 to this v.

Notice in particular then that in this case (and trivially if 0 is a tautology)

nll_)ﬂ;low (9(an+1) | /\9(&,-)) =1

i=1
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