Reichenbach's Axiom – For the record

J.B.Paris & A.Vencovská School of Mathematics The University of Manchester Manchester M13 9PL

jeff.paris@manchester.ac.uk, alena.vencovska@manchester.ac.uk

July 8, 2014

Abstract

The main purpose of this note is to make accessible a prove of an unpublished result by Haim Gaifman that, assuming Regularity, a probability function satisfies Reichenbach's Principle just and only if every point in \mathbb{D}_{2^q} is a support point of its de Finetti prior.

The following principle has been attributed to Hans Reichenbach after a suggestion by Hilary Putnam, see [2, p120]:

Reichenbach's Axiom, RA

Let $\alpha_{h_i}(x)$ for i = 1, 2, 3, ... be an infinite sequence of atoms of L.¹ Then for $\alpha_i(x)$ an atom of L,

$$\lim_{n \to \infty} \left(w \left(\alpha_j(a_{n+1}) \mid \bigwedge_{i=1}^n \alpha_{h_i}(a_i) \right) - \frac{u_j(n)}{n} \right) = 0$$
 (1)

where $u_j(n) = |\{i \mid 1 \le i \le n \text{ and } h_i = j\}|.$

¹For an explanation of the notation etc. used in this paper see, for example, [3]. Note however that \mathbb{D}_q in that paper is denoted \mathbb{D}_{2^q} in this current paper.

Informally then this principle asserts that as information of the atoms satisfied by the $a_1, a_2, \ldots, a_n, \ldots$ grows so w should treat this information like a *statistical sample* giving a value to the probability that the next, n + 1'st, case revealed will be $\alpha_j(a_{n+1})$ which gets arbitrarily close to the frequency of past instances of $\alpha_j(a_i)$.

The following theorem which was stated by Gaifman in [1] though its proof, which it was said would be given in [2], never appeared (due to the inordinate time lag between these two volumes and Gaifman developing new interests in the meantime).

Theorem 1 Let w satisfy Reg. Then w satisfies RA if and only if every point in \mathbb{D}_{2^q} is a support point of the de Finetti prior μ of w.

Proof First assume that every point in \mathbb{D}_{2^q} is a support point of μ . By de Finetti's Theorem it is enough to show that if n is large and $m_1, m_2, \ldots, m_{2^q} \in \mathbb{N}$ with sum n then

$$\frac{\int_{\mathbb{D}_{2q}} (x_j - m_j/n) \prod_{i=1}^{2^q} x_i^{m_i} d\mu}{\int_{\mathbb{D}_{2q}} \prod_{i=1}^{2^q} x_i^{m_i} d\mu}$$
(2)

is close to zero. We first need to introduce some notation and derive a number of estimates.

For small $\delta > 0$ set

$$E_{\delta} = \{ \vec{x} \in \mathbb{D}_{2^{q}} \mid x_{i} \geq \delta, \ i = 1, 2, \dots, 2^{q} \},\$$
$$E_{\delta}(\vec{c}) = \{ \vec{x} \in N_{\delta/2}(\vec{c}) \mid \exists \ \vec{y} \in E_{\delta} \ \exists \lambda \in [0, 1], \ \vec{x} = \lambda \vec{c} + (1 - \lambda) \vec{y} \}.$$

Notice that for every point $\vec{d} \in E_{\delta}(\vec{c})$ and $i = 1, 2, ..., 2^{q}$, if $c_{i} < \delta$ then $c_{i} \leq d_{i}$. Also there is a fixed $\xi > 0$ such that for each $\vec{c} \in \mathbb{D}_{2^{q}}$ there is a $\vec{d} \in E_{\delta}(\vec{c})$ such that $E_{\delta}(\vec{c})$ contains the neighbourhood $N_{\xi}(\vec{d})$.² Hence there is some $\zeta > 0$ such that

$$\forall \vec{c} \in \mathbb{D}_{2^q} \ \mu(E_\delta(\vec{c})) \ge \zeta, \tag{3}$$

²It can be checked that a suitable choice, for δ small, is $\xi = 2^{-q-3}\delta$ when \vec{d} is given by $d_i = c_i - (2^q - 1)2^{-q-2}\delta$ for some *i* for which $c_i = \max\{c_j | j = 1, 2, \dots, 2^q\}$ and $d_j = c_j + 2^{-q-2}\delta$ for the remaining $2^q - 1$ coordinates.

since if not we could find a sequence of points $\vec{c}^k \in \mathbb{D}_{2^q}$ with limit point \vec{c} such that $\mu(N_{\xi}(\vec{c}^k)) \to 0$ whilst, by the assumption on the support points of μ , $\mu(N_{\xi/2}(\vec{c})) > 0$ with $N_{\xi/2}(\vec{c})) \subseteq N_{\xi}(\vec{c}^k)$ for k large enough.

For $\vec{d} \in E_{\delta}(\vec{c})$ we have that

$$\sum_{i=1}^{2^{q}} (c_{i} \log(c_{i}) - c_{i} \log(d_{i})) = -\sum_{c_{i} \ge \delta} c_{i} \log(1 + (d_{i} - c_{i})c_{i}^{-1}) + \sum_{c_{i} < \delta} c_{i} \log(c_{i}) - c_{i} \log(d_{i}) \le 2^{q+1}\sqrt{\delta}$$
(4)

since if $c_i < \delta$ then $c_i \le d_i$ and $c_i \log(c_i) - c_i \log(d_i) \le 0$ whilst for $\delta \le c_i$ in view of $|d_i - c_i| < \delta/2$

$$-c_i \log(1 + (d_i - c_i)c_i^{-1}) \le c_i \log(2),$$

which is less or equal to $\sqrt{\delta} \log(2) \leq 2\sqrt{\delta}$ in the case of $c_i < \sqrt{\delta}$, and when $c_i \geq \sqrt{\delta}$

$$-c_i \log(1 + (d_i - c_i)c_i^{-1}) \le -c_i \log(1 - \sqrt{\delta}/2) \le \frac{c_i\sqrt{\delta}/2}{1 - \sqrt{\delta}/2} \le 2\sqrt{\delta}.$$

From (4) we now have that for $\vec{d} \in E_{\delta}(\vec{c})$,

$$\prod_{i=1}^{2^{q}} d_{i}^{c_{i}} \ge e^{-2^{q+1}\sqrt{\delta}} \prod_{i=1}^{2^{q}} c_{i}^{c_{i}}.$$
(5)

We now claim that for small $\epsilon > 0$ there exists $\tau > 0$ such that whenever $\vec{c}, \vec{d} \in \mathbb{D}_{2^q}$ and $|\vec{d} - \vec{c}| \ge \epsilon$ then

$$\sum_{i=1}^{2^{q}} (c_i \log(c_i) - c_i \log(d_i)) \ge \tau.$$

For if not, then since $\sum_{i} c_{i} \log(x_{i})$ takes its strict maximum on $\mathbb{D}_{2^{q}}$ at $\vec{x} = \vec{c}$, there would be $\vec{c}, \vec{d}, \vec{c}^{k}, \vec{d}^{k} \in \mathbb{D}_{2^{q}}$ such that $|\vec{d}^{k} - \vec{c}^{k}| \ge \epsilon$ for each $k, \vec{c}^{k} \to \vec{c}, \vec{d}^{k} \to \vec{d}$ but

$$\sum_{i=1}^{2^q} (c_i^k \log(c_i^k) - c_i^k \log(d_i^k)) \searrow 0.$$

In this case $|\vec{d} - \vec{c}| \ge \epsilon$ but

$$\sum_{i=1}^{2^{q}} c_{i} \log(c_{i}) = \sum_{i=1}^{2^{q}} c_{i} \log(d_{i}),$$

contradiction. It follows that the required τ exists and we can conclude that

$$\prod_{i=1}^{2^{q}} d_{i}^{c_{i}} \le e^{-\tau} \prod_{i=1}^{2^{q}} c_{i}^{c_{i}}$$
(6)

whenever $\vec{c}, \vec{d} \in \mathbb{D}_{2^q}, |\vec{d} - \vec{c}| \ge \epsilon.$

We now return to the proof that (2) is close to zero. Given small $\epsilon > 0$ let $\tau > 0$ be as in (6). Now pick small $\delta > 0$ such that

$$2^{q+1}\sqrt{\delta} < \tau, \epsilon. \tag{7}$$

Then putting $c_j = m_j/n$ for $j = 1, 2, \ldots, 2^q$,

$$\frac{\int_{\mathbb{D}_{2q}} (x_j - c_j) \prod_{i=1}^{2^q} x_i^{m_i} d\mu}{\int_{\mathbb{D}_{2q}} \prod_{i=1}^{2^q} x_i^{m_i} d\mu} = \frac{\int_{N_{\epsilon}(\vec{c})} (x_j - c_j) \prod_{i=1}^{2^q} x_i^{m_i} d\mu}{\int_{N_{\epsilon}(\vec{c})} \prod_{i=1}^{2^q} x_i^{m_i} d\mu + \int_{\neg N_{\epsilon}(\vec{c})} \prod_{i=1}^{2^q} x_i^{m_i} d\mu} + \frac{\int_{\neg N_{\epsilon}(\vec{c})} (x_j - c_j) \prod_{i=1}^{2^q} x_i^{m_i} d\mu}{\int_{N_{\epsilon}(\vec{c})} \prod_{i=1}^{2^q} x_i^{m_i} d\mu + \int_{\neg N_{\epsilon}(\vec{c})} \prod_{i=1}^{2^q} x_i^{m_i} d\mu} \qquad (8)$$

$$J_{N_{\epsilon}(\vec{c})} \mathbf{1} \mathbf{1}_{i=1} \mathbf{1}_{i} \quad \alpha \mu \quad + \quad J_{\neg N_{\epsilon}(\vec{c})} \mathbf{1} \mathbf{1}_{i=1} \mathbf{1}_{i}$$

Concerning (8) we have that

$$\frac{\int_{\neg N_{\epsilon}(\vec{c})} \prod_{i=1}^{2^{q}} x_{i}^{m_{i}} d\mu}{\int_{N_{\epsilon}(\vec{c})} \prod_{i=1}^{2^{q}} x_{i}^{m_{i}} d\mu} \leq \frac{\int_{\neg N_{\epsilon}(\vec{c})} \prod_{i=1}^{2^{q}} x_{i}^{m_{i}} d\mu}{\int_{E_{\delta}(\vec{c})} \prod_{i=1}^{2^{q}} x_{i}^{m_{i}} d\mu} \leq \frac{\int_{\neg N_{\epsilon}(\vec{c})} e^{-n\tau} \prod_{i=1}^{2^{q}} c_{i}^{nc_{i}} d\mu}{\int_{E_{\delta}(\vec{c})} e^{-n2^{q+1}\sqrt{\delta}} \prod_{i=1}^{2^{q}} c_{i}^{nc_{i}} d\mu} \quad \text{by (5), (6),} \\ \leq \frac{e^{-n\tau}}{\zeta e^{-n2^{q+1}\sqrt{\delta}}}. \tag{10}$$

which by (7) is small for large *n*. Hence (8) is close to

$$\frac{\int_{N_{\epsilon}(\vec{c})} (x_j - c_j) \prod_{i=1}^{2^q} x_i^{m_i} d\mu}{\int_{N_{\epsilon}(\vec{c})} \prod_{i=1}^{2^q} x_i^{m_i} d\mu}$$

which is between $-\epsilon$ and ϵ since $|x_j - c_j| < \epsilon$ over $N_{\epsilon}(\vec{c})$.

Clearly the inequalities already given in (10) also show that (9) is small for large n and the required result follows.

Turning to the other direction of the theorem suppose that w satisfies Reg and not every point of \mathbb{D}_{2^q} is a support point of the de Finetti prior μ of w. We shall sketch a proof that in this case RA fails in general, even when the sequence $u_i(n)/n$ converges.

Since the set of non-support points of μ form an open set and w satisfies Reg we can find points $\vec{b}, \vec{d} \in \mathbb{D}_{2^q}$ with no zero coordinates with \vec{b} a support point of μ and \vec{d} a non-support point. By considering points on the line joining \vec{b}, \vec{d} we may assume that \vec{b} is close to \vec{d} and, by considering a nearest support point to \vec{d} and then moving a distance in its direction if necessary, that no support point is as close (or closer) to \vec{d} than \vec{b} . Let $r = |\vec{b} - \vec{d}| < s/2$ where $s = \min\{b_i, d_i \mid i = 1, 2, \ldots, 2^q\}$ and let ϵ be small. In the diagram below let \vec{c} be on the line joining \vec{b}, \vec{d} distance 2ϵ from \vec{b} , let the plane P be normal to this line distance ϵ from \vec{b} and let P^+ be the region on the same side of P as \vec{c}, P^- its complement. Note that $2r < s \leq c_i$ for each i.

Then

$$\sum_{i=1}^{2^{q}} (c_{i} \log(c_{i}) - c_{i} \log(b_{i})) = \sum_{i=1}^{2^{q}} -c_{i} \log\left(1 + \frac{(b_{i} - c_{i})}{c_{i}}\right)$$
$$= \sum_{i=1}^{2^{q}} -(b_{i} - c_{i}) + \frac{(b_{i} - c_{i})^{2}}{2c_{i}} + O(\epsilon^{3})$$
$$= \sum_{i=1}^{2^{q}} \frac{(b_{i} - c_{i})^{2}}{2c_{i}} + O(\epsilon^{3}) \le 3s^{-1}\epsilon^{2}$$
(11)

since $\sum_{i=1}^{2^q} b_i = \sum_{i=1}^{2^q} c_i = 1.$

On the other hand let $\vec{x} \in P^+$ with $|\vec{x} - \vec{d}| \ge r$ and suppose for the moment that $|x_i - c_i| < c_i$ for each *i*. The distance from \vec{x} to \vec{c} must be at least $\sqrt{2r\epsilon}$ so

$$\sum_{i=1}^{2^{q}} (c_{i} \log(c_{i}) - c_{i} \log(x_{i})) = \sum_{i=1}^{2^{q}} -c_{i} \log\left(1 + \frac{(x_{i} - c_{i})}{c_{i}}\right)$$

$$= \sum_{i=1}^{2^{q}} -(x_{i} - c_{i}) + \frac{(x_{i} - c_{i})^{2}}{2c_{i}} - \frac{(x_{i} - c_{i})^{3}}{3c_{i}^{2}} + \dots$$

$$= \sum_{i=1}^{2^{q}} \frac{(x_{i} - c_{i})^{2}}{2c_{i}} - \frac{(x_{i} - c_{i})^{3}}{3c_{i}^{2}} + \dots$$

$$\geq \sum_{i=1}^{2^{q}} \frac{(x_{i} - c_{i})^{2}}{8c_{i}} \geq 2^{-2}rs^{-1}\epsilon.$$
(12)

Furthermore the inequality (12) also holds for any $\vec{x} \in P^+$ with $|\vec{x} - \vec{d}| \ge r$ since the function $\sum_{i=1}^{2^q} (c_i \log(c_i) - c_i \log(x_i))$ is increasing along straight lines emanating from \vec{c} . As in the first half of this proof, using (11), (12) it now follows that if

$$\left\langle \frac{u_1(n)}{n}, \frac{u_2(n)}{n}, \dots, \frac{u_{2^q}(n)}{n} \right\rangle \rightarrow \vec{c}$$

as $n \to \infty$ then

$$\frac{\int_{\mathbb{D}_{2^q}} x_j \prod_{i=1}^{2^q} x_i^{u_i(n)} d\mu}{\int_{\mathbb{D}_{2^q}} \prod_{i=1}^{2^q} x_i^{u_i(n)} d\mu} - \frac{\int_{P^-} x_j \prod_{i=1}^{2^q} x_i^{u_i(n)} d\mu}{\int_{P^-} \prod_{i=1}^{2^q} x_i^{u_i(n)} d\mu}$$
(13)

tends to 0 as $n \to \infty$. But even assuming the limit e_j of the left hand side of (13) exists for $j = 1, 2, ..., 2^q$ then, because of the equality with the right hand side of (13), would have to have $\vec{e} \in P^-$ so $\vec{e} \neq \vec{c}$. Either way RA fails, as required.

In fact the forward direction of the above proof has shown an ostensibly stronger result, that under the given assumptions RA holds *uniformly*. Precisely:

Corollary 2 Let w satisfy Reg and suppose that every point in \mathbb{D}_{2^q} is a support point of the de Finetti Prior μ of w. Then for $\epsilon > 0$ there is $k \in \mathbb{N}$ such that for any sequence $\alpha_{h_i}(x)$ of atoms of L and $n \geq k$

$$\left| w \left(\alpha_j(a_{n+1}) \mid \bigwedge_{i=1}^n \alpha_{h_i}(a_i) \right) - \frac{u_j(n)}{n} \right| < \epsilon,$$

where $u_i(n) = |\{i \mid 1 \le i \le n \text{ and } h_i = j\}|.$

We have assumed in Theorem 1 that w satisfies Reg. Clearly this is necessary for RA to make sense *in general* since without Reg we can have the conditional in (1) undefined. Notwithstanding, in [1] Gaifman states a generalization of Theorem 1 appropriate to this case.

If the probability function w satisfies RA and Reg then it satisfies an analogous version of RA for consistent non-tautological $\theta(a_1) \in QFSL$. Namely

$$\lim_{n \to \infty} \left(w \left(\theta(a_{n+1}) \mid \bigwedge_{i=1}^n \theta^{\epsilon_i}(a_i) \right) - \frac{u(n)}{n} \right) = 0$$

where $u(n) = \sum_{i=1}^{n} \epsilon_i$. To see this notice that the map

$$\vec{x} \in \mathbb{D}_{2^q} \mapsto w_{\vec{x}}(\theta(a_1))$$

is continuous and onto [0, 1] so for μ the de Finetti prior of w the measure ν on \mathbb{D}_2 defined by

$$\nu(A) = \mu\{\vec{x} \mid \langle w_{\vec{x}}(\theta(a_1)), 1 - w_{\vec{x}}(\theta(a_1)) \rangle \in A\}$$

has every point in \mathbb{D}_2 as a support point and by the IP property of the $w_{\vec{x}}$ we have

$$\int_{\mathbb{D}_2} w_{\langle x_1, x_2 \rangle} \left(\bigwedge_{i=1}^n R_1^{\epsilon_i}(a_i) \right) d\nu(\langle x_1, x_2 \rangle) = \int_{\mathbb{D}_2} x_1^{n_1} x_2^{n_2} d\nu(\langle x_1, x_2 \rangle) \\ = \int_{\mathbb{D}_{2^q}} w_{\vec{x}} \left(\bigwedge_{i=1}^n \theta^{\epsilon_i}(a_i) \right) d\mu(\vec{x})$$

where $n_1 = \sum_{i=1}^{n} \epsilon_i$, $n_2 = n - n_1$. The required conclusion now follows by applying Theorem 1 to this ν .

Notice in particular then that in this case (and trivially if θ is a tautology)

$$\lim_{n \to \infty} w\left(\theta(a_{n+1}) \mid \bigwedge_{i=1}^n \theta(a_i)\right) = 1.$$

References

- Carnap, R., A Basic System of Inductive Logic, in *Studies in Inductive Logic and Probability, Volume I*, Eds. R.Carnap & R.C.Jeffrey, University of California Press, 1971, pp33-165.
- [2] Carnap, R., A Basic System of Inductive Logic, in *Studies in Inductive Logic and Probability, Volume II*, ed. R.C.Jeffrey, University of California Press, 1980, pp7-155.
- [3] Paris, J.B., Pure Inductive Logic, in *The Continuum Companion to Philosophical Logic*, Eds. L.Horsten & R.Pettigrew, Continuum International Publishing Group, London, 2011, pp428-449.