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Abstract

In this paper we extend the support for a general ‘Emergence of Reasons’

principle in predicate uncertain reasoning by proving the base case of the

‘Emergence of Reasons Conjecture’, for all s, in the case of the inference

process CM∞.

Introduction

The purpose of this paper is to continue the line of research into the so called

‘Emergence of Reason’s Conjecture’ as documented in ...... by showing that

in the case of the inference process CM∞ the base case of this conjecture

holds for all positive natural numbers s.

Describe conjecture and CM∞

The Main Theorem

Theorem 1 Let Kr be the consistent set of constraints

{Bel(P (ai1)) = b1, Bel(P (ai1) ∧ P (ai2)) = b2, . . . , Bel(P (ai1) ∧ . . . ∧ P (ais)) = bs |

1 ≤ i1, . . . , is ≤ r, ij 6= ik for j 6= k}.

Then for any s

lim
r→∞

CM∞(Kr)

(
m∧
i=1

P εi(ai)

)
exists and agrees with the canonical solution for some complete set of reasons.

Proof. Let

Zi = CM∞(Kr)

 ∨
~ε∈{0,1}r∑

εt=i

∧
1≤j≤r

P εj(aj)

 .
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We begin by showing that for any r there exist constants µ0, µ1, . . . , µs such

that

Zi =

(
r
i

)
µs
(
i
r

)s
+ . . .+ µ1

(
i
r

)
+ µ0

.

Firstly, by the Renaming Principle, the value of CM∞(Kr)
(∧r

j=1 P
εj(aj)

)
depends only on

∑r
j=1 εj so if

Wi = CM∞(Kr)

( ∧
1≤j≤r

P εj(aj)

)
for

r∑
j=1

εj = i (1)

then

Zi =

(
r

i

)
Wi.

Also, if we let ui = Bel(
∧r
j=1 P

εj(aj)) for
∑r

j=1 εj = i then, for any inference

process satisfying the Renaming Principle, the system of constraints, Kr, is

equivalent to

r∑
i=0

(
r

i

)
ui = 1,

r∑
i=0

i

r

(
r

i

)
ui = b1, . . . ,

r∑
i=0

i(i− 1) . . . (i− s+ 1)

r(r − 1) . . . (r − s+ 1)

(
r

i

)
ui = bs.

(2)

According to (a special case of) de Finetti’s representation theorem of ex-

changeable measures we have

ui =

∫
xi(1− x)r−idµ(x)

for 0 ≤ i ≤ r where µ is a measure on [0, 1]. Now, for 0 < i < r, since

xi(1−x)r−i > 0 for x ∈ (0, 1), we have ui = 0 if and only if µ(0, 1) = 0. Thus

if ui = 0 for any 0 < i < r only u0 and ur can possibly be non-zero. In this

case (2) gives b1 = b2 = . . . = bs = ur and we can use the basic properties

of probability functions to show that the only solution for Kr agrees with

that for the complete set of reasons Q1, Q2 with λ1 = b1, λ2 = 1 − b1,

β1 = 1, β2 = 0. Now we need only consider the case where µ(0, 1) > 0 and

consequently ui > 0 for 0 ≤ i ≤ r. In this case, by the Open-mindedness

Principle, the Wi are all non-zero and the CM∞(Kr) belief function is that
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which maximizes the sum
r∑
i=0

(
r

i

)
log ui

with respect to the above constraints. Now, using the Lagrange Multipliers

method, we can find constants ν0, ν1, . . . , νs such that

1

Wi

− νs
i(i− 1) . . . (i− s+ 1)

r(r − 1) . . . (r − s+ 1)
− . . .− ν1

i

r
− ν = 0.

Rearranging gives the required form. We will consider the case where µs = 0

later but for now we shall assume that µs 6= 0. We now prove some results

about the behaviour of the Zi for large values of r.

Lemma 2 The function

f(x) = xx(1− x)(1−x) (3)

is strictly decreasing for x ∈ (0, 1
2
) and strictly increasing for x ∈ (1

2
, 1).

Proof. Differentiating gives

f ′(x) = xx(1− x)(1−x) log

(
x

1− x

)
.

Now, if x ∈ (0, 1
2
) then x

1−x < 1 so f ′(x) < 0 and if x ∈ (1
2
, 1) then x

1−x > 1

so f ′(x) > 0 giving the required result. �

Lemma 3 Given any ε > 0 there exists N such that for all r ≥ N if 0 <

β < β + ε ≤ α < 1
2

and the Zi are increasing for [βr] ≤ i ≤ αr or if
1
2
< α < α + ε ≤ β < 1 and the Zi are decreasing for [αr] ≤ i ≤ βr then

Z[αr] > r2Z[βr].

Proof. We use Stirling’s formula which states that

r! =
√

2πr
(r
e

)r
eθ(r)

where θ(r) = 1
12r

+O( 1
r2

). From this we get(
r

xr

)
=

eθ(r)−θ((1−x)r)−θ(xr)
√

2πr(xxr+
1
2 (1− x)(1−x)r+

1
2 )
. (4)

3



If we let

g(x) = µsx
s + . . .+ µ1x+ µ0 (5)

then using (4) we can show that (writing αr for [αr] etc.)

Z(α+β2 )r

Zαr
= eφ

√
α(1− α)(

α+β
2

)
(1− α+β

2
)

(
f(α)

f
(
α+β
2

))r(
g(α)

g
(
α+β
2

)) (6)

where φ → 1 as r → ∞ and f is as in (3). Now, by lemma 2, we have
f(α)

f(α+β
2

)
< 1. Thus if we can show that g(α)

g(α+β
2

)
is bounded above by some

constant then the right hand side of the above expression will be less than r−2

for r sufficiently large. Since the Zi are increasing on [βr, αr] (or decreasing

on [αr, βr]) this would give us r2Zβr < r2Z(α+β2 )r < Zαr as required.

Since Zi ≥ 0 and
(
r
i

)
> 0 for i = 1, 2, . . . , r we must have g( i

r
) > 0.

Since g is a polynomial, thus continuous with finitely many turning points,

for r sufficiently large we can consider a suitable subinterval of [β, α] ([α, β])

on which g(x) > 0. By considering such a subinterval (if necessary) we can

assume that g(x) > 0 for x ∈ [β, α] (x ∈ [α, β]). Now we can write

g(x) = h1(x)h2(x) . . . hn(x)

where each hi(x) is an irreducible polynomial of degree less than or equal to

2 and since g(x) > 0 we can assume hi(x) > 0 for x ∈ [β, α] (x ∈ [α, β])

i = 1, 2, . . . n.

We now wish to find an upper bound for each ratio hi(α)

hi(α+β2 )
. First we

consider the case where hi is linear. Since hi(x) > 0 for x ∈ [β, α] (x ∈ [α, β])

we have

hi(α) < hi(α) + hi(β) = 2hi

(
α + β

2

)
so

hi(α)

hi
(
α+β
2

) < 2.

Now we consider the case where hi is quadratic, say

hi(x) = λx2 + µx+ ν.
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Since there are only finitely many hi and each has at most one turning point

we can assume (by considering a suitable subinterval if necessary) that each

hi is monotone on [β, α] ([α, β]). Since the result follows immediately if

hi(
α+β
2

) > hi(α) we can assume that hi is strinctly increasing on [β, α]

(or decreasing on [α, β]). We are assuming hi is irreducible so λ > 0 and

µ2 − 4λν < 0 so we can write

hi(α)

hi(
α+β
2

)
=

(
λα+µ

2√
λν−µ2

4

)2

+ 1(
λ(α+β2 )+µ

2√
λν−µ2

4

)2

+ 1

.

Since hi is strictly increasing on [β, α] (or decreasing on [α, β]) it must be the

case that λα+ µ
2

and λβ+ µ
2

are both positive (or both negative respectively),

so if we let

h(x) =

∣∣∣∣∣∣ λx+ µ
2√

λν − µ2

4

∣∣∣∣∣∣ (7)

then we must have 0 < h(β) < h(α+β
2

) < h(α) since λ > 0. Thus

h(α) < h(α) + h(β) = 2h

(
α + β

2

)
and

hi(α)

hi(
α+β
2

)
<

h(α)2

h
(
α+β
2

)2 < 4

giving a suitable upper bound. Now
∑

deg(hi) = s so

g(α)

g(α+β
2

)
< 2s

and the result follows. �

Lemma 4 Given ε > 0 there exists N > 0 such that for all r ≥ N if

0 < β < β + ε ≤ α < 1
2

then the Zi cannot be monotone decreasing on

[βr] ≤ i ≤ αr and if 1
2
< α < α+ ε ≤ β < 1 then the Zi cannot be monotone

increasing on [αr] ≤ i ≤ βr.
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Proof. Suppose the Zi are decreasing on [βr, αr] (increasing on [αr, βr])

where 0 < β < β + ε ≤ α < 1
2

(1
2
< α < α + ε ≤ β < 1) then by (6) we can

write

Zαr
Z(α+β2 )r

= e−φ

√(
α+β
2

)
(1− α+β

2
)

α(1− α)

(
f
(
α+β
2

)
f(α)

)r(
g
(
α+β
2

)
g(α)

)
≤ 1.

Now, by the argument in the proof of the previous lemma we have g(α)

g(α+β
2

)
< 2s

so
f
(
α+β
2

)
f(α)

< (2seφ)
1
r → 1 as r →∞

giving
f
(
α+β
2

)
f(α)

≤ 1.

But now, by lemma 2
f
(
α+β
2

)
f(α)

> 1

giving the required contradiction. �

Lemma 5 • If s = 2n+ 1 for some n ∈ N and µs > 0 then the Zi have

at most n+ 2 local maxima. If the Zi have precisely n+ 2 local maxima

then one of these occurs at i = 0.

• If s = 2n + 1 for some n ∈ N and µs < 0 then the Zi have at most

n + 2 local maxima. If the Zi have precisely n + 2 local maxima then

one of these occurs at i = r.

• If s = 2n for some n ∈ N and µs > 0 then the Zi have at most n + 1

local maxima.

• If s = 2n for some n ∈ N and µs < 0 then the Zi have at most n + 2

local maxima. If the Zi have precisely n + 2 local maxima then one

of these occurs at i = 0 and one at i = r. If the Zi have n + 1 local

maxima then one of these occurs at either i = 0 or i = r.
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Proof. For 0 < i0 < r, the Zi have a local maximum at i0 if and only if

g( i0−1
r

)

g( i0
r

)
≥ i0
r − i0 + 1

and
g( i0

r
)

g( i0+1
r

)
≤ i0 + 1

r − i0
.

Thus, by continuity, the Zi can only have a local maximum at i0 if there is

some x0 ∈ [ i0−1
r
, i0
r

] such that

g(x0)

g(x0 + 1
r
)

=
rx0 + 1

r − rx0

or equivalently, x0 is a root of the polynomial equation

p(x) = 0

where

p(x) = g(x)(r − rx)− g(x+
1

r
)(rx+ 1)

such that p(x) > 0 for x ∈ (x0 − ε, x0) and p(x) < 0 for x ∈ (x0, x0 + ε) for

some ε > 0. Now we can write

p(x) = −2µsx
s+1 +O(xs)

so we see that p(x) is a polynomial with degree s + 1 and with leading

coefficient of opposite sign to that of g(x). Note that the Zi can only have a

maxima at i = 0 if p(0) < 0 and at i = r if p(1− 1
r
) > 0. Now, if s = 2n+ 1

and µs > 0 then p has degree 2n + 2 and a negative leading coefficient.

Hence p can have at most n + 1 roots corresponding to maxima of the Zi.

Also p(x) < 0 for x < x0 where x0 is the first root of p and p(x) < 0 for

x > x1 where x1 is its last root, so if the Zi have n+ 1 local maxima in (0, 1)

they may also have a maxima at 0 but not 1. Similar arguments complete

the proof for the other cases. �

Suppose the Zi have local maxima at m1,m2, . . . ,mq and let ej =
mj
r

for

j = 1, 2, . . . , q. Let δ(r) be such that rδ(r) is the smallest positive real

number satisfying

Zi ≤
1

r2
max{Zre1 , Zre2 , . . . , Zreq}

7



whenever |i−re1|, |i−re2|, . . . ,|i−req| > rδ(r). We now show that δ(r)→ 0

as r → ∞. By lemma 4, given ε > 0 there exists N1 > 0 such that for all

r ≥ N1

• one of the local maxima must occur in the interval [r(1
2
− ε), r(1

2
+ ε)]

(say eq ∈ [1
2
− ε, 1

2
+ ε]).

• the Zi are increasing for i < r(eq − ε) and decreasing for i > r(eq + ε)

except possibly in the intervals [r(ej−ε), r(ej+ε)] for j = 1, 2, . . . , q−1.

Now by lemma 3 there exists N2 > 0 such that for all r ≥ N2, if the Zi are

increasing (decreasing) on [(ej − 2ε)r, (ej − ε)r] ([(ej + ε)r, (ej + 2ε)r]) then

Z(ej−2ε)r < r−2Z(ej−ε)r < r−2Zejr (Z(ej+2ε)r < r−2Z(ej+ε)r < r−2Zejr). Thus

for r ≥ max{N1, N2} we have δ(r) < 2ε so δ(r) → 0 as r → ∞ as required.

Let

Yj =
∑

|i−rej |≤rδ(r)

|i−rej′ |>rδ(r)forj′<j

Zi

then, since eq → 1
2

as r →∞, we have

Y1 + . . .+ Yq−1 + Yq = 1 +O

(
1

r

)
e1Y1 + . . .+ eq−1Yq−1 +

1

2
Yq = b1 +O(δ(r))

...

es1Y1 + . . .+ esq−1Yq−1 +
1

2s
Yq = bs +O(δ(r))

Lemma 6 We can find a unique solution to the above equations of the form

ej = Fj(b1, . . . , bs) +O(δ(r))

Yj = Gj(b1, . . . , bs) +O(δ(r))

for some functions Fj, Gj, j = 1, 2, . . . , q, (with Fq(~b) = 1
2
)

Proof. Since the eri , Y
r
i are bounded seequences they must have convergent

subsequences. The limits of such subsequences give suitable solutions so we

only need to prove uniqueness.
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Suppose we have

Y1 + . . .+ Yq = 1 = Yq+1 + . . .+ Yq+l

e1Y1 + . . .+ eqYq = b1 = eq+1Yq+1 + . . .+ eq+lYq+l
...

es1Y1 + . . .+ esqYq = bs = esq+1Yq+1 + . . .+ esq+lYq+l

where eq = eq+l = 1
2
; the Yi are all non-zero; e1, . . . , eq are pairwise distinct;

eq+1, . . . , eq+l are pairwise distinct; both solutions satisfy the restrictions set

by lemma 5 (so, for example, if s = 2n + 1 and q = l = n + 2 then there

are i ∈ {1, . . . , q − 1}, j ∈ {q + 1, . . . , q + l − 1} such that ei = ej = 0 or

1). We wish to show that these are essentially the same solution in the sense

that q = l and for each i ∈ {1, . . . , q} there exists j ∈ {q + 1, . . . , q + l}
such that ei = ej and Yi = Yj. Suppose t is the number of distinct ei in the

above equations. We see immediately that t ≤ q + l − 1 since eq = eq+l = 1
2
.

However, depending on the parity of s and the sign of µs, lemma 5 places

further restrictions. If s = 2n + 1 and q = l = n + 2 then for some i ∈
{1, . . . , q − 1} and j ∈ {q + 1, . . . , q + l − 1} we have ei = ej = 0 or 1. Thus

t ≤ q + l− 2 = 2n+ 2 = s+ 1. Similarly if q or l ≤ n+ 1 we have t ≤ s+ 1.

If s = 2n and µs > 0 then t ≤ q + l − 1 ≤ 2n + 1 = s + 1. If s = 2n and

µs < 0 then if q = l = n+ 2 we have t ≤ q+ l− 3 = 2n+ 1 = s+ 1. Similarly

if q or l ≤ n + 1 we have t ≤ s + 1. Thus we always have t − 1 ≤ s and we

can rearrange the above equations to give

V1 + . . .+ Vt = 0

ei1V1 + . . .+ eitVt = 0
...

et−1i1
V1 + . . .+ et−1it

Vt = 0

...

esi1V1 + . . .+ esitVt = 0

where ei1 , . . . , eit are pairwise distinct and for i = 1, . . . , t either Vi = ±Yj
for some j ∈ {1, . . . , q + l} or Vi = Yj1 − Yj2 for some j1 ∈ {1, . . . , q},

9



j2 ∈ {q + 1, . . . , q + l}. Thus if

A =


1 1 . . . 1

ei1 ei2 . . . eit
...

...
...

et−1i1
et−1i2

. . . et−1it


and

~V = (V1, V2, . . . , Vt)

then

A~V T = 0.

However A is a van der Monde matrix and its determinant is given by

det(A) =
∏
j<k

(eij − eik)

so, by our assumption that the eij are distinct, we have det(A) 6= 0 so Vi = 0

for i = 1, . . . , t. Since we are assuming the Yi’s are non-zero we must have

0 = Vi = Yj1 − Yj2 for some j1 ∈ {1, . . . , q}, j2 ∈ {q + 1, . . . , q + l} for

i = 1, . . . , t. Thus t = q = l and the result follows. �

Now we can complete the proof as follows.

ME(Kr)
(∧k

i=1 P (ai) ∧
∧m
i=k+1 ¬P (ai)

)

=
r−m∑
i=0

(
r −m
i

)
Wk+i

=
r−m+k∑
i=k

(
r −m
i− k

)
Wi

=
r∑
i=0

(
r

i

)
i(i− 1) . . . (i− k + 1)

r(r − 1) . . . (r − k + 1)

(r − i)(r − i− 1) . . . (r − i−m+ k + 1)

(r − k)(r − k − 1) . . . (r −m+ 1)
Wi

=
r∑
i=0

i(i− 1) . . . (i− k + 1)

r(r − 1) . . . (r − k + 1)

(r − i)(r − i− 1) . . . (r − i−m+ k + 1)

(r − k)(r − k − 1) . . . (r −m+ 1)
Zi.
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So

lim
r→∞

ME(Kr)

(
k∧
i=1

P (ai) ∧
m∧

i=k+1

¬P (ai)

)
=

q∑
i=1

λiβ
k
i (1− βi)m−k

where

βi = Fi(b1, . . . , bs)

λi = Gi(b1, . . . , bs).

Throughout we have assumed that µs 6= 0 but clearly if µs = 0 then the

above proof holds if we replace s everywhere by s− 1. �
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