
MATH43001/63001, January 2011 Exam, Solutions1

A1. (i) f(x1, f(x1, x2)) ∈ TL since x1, x2 ∈ TL by Te1, so f(x1, x2) ∈ TL by
Te2 and f(x1, f(x1, x2)) ∈ TL by Te2 again.

(ii) f((f(x1, x2), x1) /∈ TL since this word has different numbers of right and left
round brackets and we can prove by induction on |t| that any t ∈ TL has the same
number. [Not necessary to give the proof but for the record: Clearly true if t is a
constant or free variable xi (when there are zero of either) and if t = f(t1, . . . , tn)
then the number of ‘(’ in t equals 1 plus the number in t1, . . . , tn, equals 1 plus
the number of ‘)’ in t1, . . . , tn, by inductive hypothesis, equals the number of ‘)’
in t.]

(iii) ∀w1 ¬R(w1, x1) ∈ FL since R(x2, x1) ∈ FL by L1, so ¬R(x2, x1) ∈ FL by
L2, and finally then ∀w1 ¬R(w1, x1) ∈ FL by L3.

(iv) ∀w1 ¬R(w2, x1) /∈ FL since we can prove by induction on |θ| for θ ∈ FL that
if w2 occurs in θ then so does either ∃w2 or ∀w2, which rules out ∀w1 ¬R(w2, x1)
being in FL. [Again no need to prove this but for the record: Clearly true,
vacuously, for R(t1, t2), and if it holds for φ, ψ then it holds for ¬φ, (φ ∧ ψ), (φ ∨
ψ), (φ → ψ). Also if it holds for η and η does not mention wj, if j 6= 2 then it
holds for ∃wj η(wj/xi) and ∀wj η(wj/xi), whilst if j = 2 then the condition holds
trivially for ∃w2 η(w2/xi) and ∀w2 η(w2/xi).]

(v) M |= ∀w1∀w2 (R(w1, w2) → R(w2, w1)) ⇐⇒
for all n,m ∈ N+, if n < m then m < n,

which is false since, e.g. 1 < 2 but 2 ≮ 1.

(vi) M |= ∃w1∀w2 ¬R(w2, f(w1, w2)) ⇐⇒
there is an n ∈ N+ such that for all m ∈ N+, m ≮ nm,

which is true when we take n = 1 since m ≮ 1 ×m for any m ∈ N+.

(vii) M |= ∀w1 (R(w1, f(w1, w1)) → ∀w2R(w2, f(w1, w2))) ⇐⇒
for all n ∈ N+, if n < n2 then for all m ∈ N+, m < nm.

This is true since if n ∈ N+ and n < n2 then n > 1 so m < nm for m ∈ N+.

θ1(x1, x2) = R(f(x1, x1), x2)

θ2(x1, x2) = (¬R(x1, x2) ∧ ¬R(x2, x1))

θ3(x1, x2) = (R(x1, x2) ∧ ¬∃w1 (R(x1, w1) ∧ R(w1, x2)))

θ4(x1, x2) = ∃w1 θ2(f(x1, w1), w2) = ∃w1 (¬R(f(x1, w1), x2) ∧ ¬R(x2, f(x1, w1)))

φ = ∀w1∃w2 R(w1, f(w1, w2)) (since this fails in K when w1 = 0).

1These solutions are more detailed than I would expect in the exam. That’s because I want
them to also serve an educational purpose when given with ‘last year’s paper’ next year(!)
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A2. A suitable logical equivalent (there are many possibilities here) in PNF is

∀w2 ∀w1 (P (w2) → ¬R(w1)).

It is enough to just write this down for the marks but for the record we could
argue:

¬∃w1 R(w1) ≡ ∀w1 ¬R(w1) and ∃w1 P (w1) ≡ ∃w2 P (w2)

by the ‘Useful Equivalents’ (UEs for short).

∴ (∃w1 P (w1) → ¬∃w1 R(w1)) ≡ (∃w2 P (w2) → ∀w1 ¬R(w1)) by Lemma 1,

∴ (∃w1 P (w1) → ¬∃w1 R(w1)) ≡ ∀w2 (P (w2) → ∀w1 ¬R(w1))

by UEs and transitivity of ≡. Also by UEs,

(P (x2) → ∀w1 ¬R(w1)) ≡ ∀w1 (P (x2) → ¬R(w1))

so by Lemma 1,

∀w2 (P (w2) → ∀w1 ¬R(w1)) ≡ ∀w2∀w1 (P (w2) → ¬R(w1))

and the result follows by transitivity of ≡.

A3. A formal proof of ∃w1 θ(w1) → φ ⊢ ∀w1 (θ(w1) → φ) where w1 does not
occur in φ:

1 θ(x1), ∃w1θ(w1) → φ | ∃w1θ(w1) → φ REF

2 θ(x1), ∃w1θ(w1) → φ | θ(x1) REF

3 θ(x1), ∃w1θ(w1) → φ | ∃w1θ(w1) ∃I, 2

4 θ(x1), ∃w1θ(w1) → φ |φ MP, 1, 3

5 ∃w1θ(w1) → φ | (θ(x1) → φ) IMR, 4

6 ∃w1θ(w1) → φ | ∀w1 (θ(w1) → φ) ∀I, 5

A4. Completeness Theorem: For Γ ⊆ FL and θ ∈ FL, Γ ⊢ θ ⇐⇒ Γ |= θ.
(a) Let M be the structure for L such that |M | = N, PM = {n ∈ N |n is even },
QM = {n ∈ N |n is odd }. Then M |= ∀w1 P (w1) → ∀w1Q(w1) since M 2

∀w1 P (w1). However M 2 ∀w1 (P (w1) → Q(w1)) since 0 ∈ N is even but not
odd. Hence

∀w1 P (w1) → ∀w1Q(w1) 2 ∀w1 (P (w1) → Q(w1))

and by the Completeness Theorem

∀w1 P (w1) → ∀w1Q(w1) 0 ∀w1 (P (w1) → Q(w1)).
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(b) Let M be a structure for L and suppose that

M |= ∀w1∀w2 (P (w1) ∨Q(w2)) ⋆

but
M 2 ∀w1 P (w1) ∨ ∃w2Q(w2) †

Then
M 2 ∀w1 P (w1) and M 2 ∃w2 Q(w2).

Hence for some a ∈ |M |, M 2 P (a) and also M 2 Q(a) since M 2 ∃w2 Q(w2).
Hence M 2 P (a) ∨Q(a). But this contradicts ⋆. Hence given ⋆ † must fail, so

∀w1∀w2 (P (w1) ∨Q(w2)) |= ∀w1 P (w1) ∨ ∃w2Q(w2)

and by the Completeness Theorem

∀w1∀w2 (P (w1) ∨Q(w2)) ⊢ ∀w1 P (w1) ∨ ∃w2 Q(w2).

A5. (i)+(ii) 2 (iii): Let M be the structure for L such that |M | = N and
RM = {〈n,m〉 ∈ N2 |n < m}. Then (i) is true in M since for every n ∈ N there
is m ∈ N such that n < m and (ii) is true in M since 0 ∈ N and m ≮ 0 for
every m ∈ N. However M |= R(0, 1) since 0 < 1 but there is no n ∈ N such that
M |= R(0, n) ∧R(n, 1), i.e. 0 < n < 1 so (iii) fails in M .

(i)+(iii) 2 (ii): Let M be the structure for L with |M | = R and RM = {〈n,m〉 ∈
R2 |n < m}. Then (i) is true in M since for every r ∈ R there is an s ∈ R such
that r < s and (iii) is true in M since if r, s ∈ R and r < s then there is a
t ∈ R (for example (r + s)/2) such that r < t < s. However (ii) fails in M since
otherwise there would have to be some r ∈ R such that for all s ∈ R, s ≮ r,
which is false (take s = r − 1).

(ii)+(iii) 2 (i): Let M be the structure for L with |M | = {0} and RM = ∅. Then
for any s ∈ |M |, 〈0, s〉 /∈ RM so (ii) holds in M . Also since 〈s, r〉 /∈ RM for any
r, s ∈ |M |, M 2 R(s, r) and M |= R(s, r) → ∃w3 (R(w1, w3) ∧R(w3, w2)). Hence
(iii) holds in M . However (i) fails in M since for the only element of |M |, 0, there
is no s ∈ |M | such that M |= R(0, s), i.e. 〈0, s〉 ∈ RM .

B6. Claim For any φ(~x) ∈ FL and any ~a ∈ |M |,

M∗ |= φ(~a) ⇐⇒ M |= φ∗(~a)

where (as expected) φ∗(~x) is the result of replacing the relation symbol P every-
where in φ(~x) by Q.

The claim is proved by induction on |φ| (for all ~a simultaneously). If φ(~x) =
R(xi1 , . . . , xim)) and R 6= P then φ∗(~x) = φ(~x) and

M |= φ∗(~a) ⇐⇒ M |= φ(~a) ⇐⇒ 〈ai1 , . . . , aim〉 ∈ RM
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⇐⇒ 〈ai1 , . . . , aim〉 ∈ RM∗

⇐⇒ M∗ |= φ∗(~a) ⇐⇒ M∗ |= φ(~a).

If R = P then

M |= φ∗(~a) ⇐⇒ M |= Q(ai1 , . . . , aim) ⇐⇒ 〈ai1 , . . . , aim〉 ∈ QM

⇐⇒ 〈ai1 , . . . , aim〉 ∈ PM∗

⇐⇒ M∗ |= P (ai1, . . . , aim) ⇐⇒ M∗ |= φ(~a).

Assuming the result for ψ(~x), η(~x), χ(xi, ~x) (and noticing that ((ψ(~x)∧ η(~x)))∗ =
(ψ∗(~x) ∧ η∗(~x)) we have

M |= ψ∗(~a) ∧ η∗(~a) ⇐⇒ M |= ψ∗(~a) and M |= η∗(~a) ⇐⇒

⇐⇒ M∗ |= ψ(~a) and M∗ |= η(~a) (by Ind.Hyp.) ⇐⇒ M∗ |= ψ(~a) ∧ η(~a)

and similarly for the other connectives. Also (noticing that (∃wj χ(wj, ~x))
∗ =

∃wj χ
∗(wj, ~x))

M |= ∃wj χ
∗(wj,~a) ⇐⇒ for some b ∈ |M |, M |= χ∗(b,~a) ⇐⇒

⇐⇒ for some b ∈ |M |(= |M∗|), M∗ |= χ(b,~a) (by Ind.Hyp. ⇐⇒ M∗ |= ∃wj χ(wj,~a),

and similarly for χ(xi, ~x), completing the induction.

Now suppose that |= θ(~x). Then for any structure M for L and assignment
~x 7→ ~a, M∗ |= θ(~a) so by the claim M |= θ∗(~a). Hence |= θ∗(~x), as required.

The converse is not true, for example |= Q(x1) ∨ ¬Q(x1) but 2 Q(x1) ∨ ¬P (x1).

B7. A proof of EqL(=), ∀w1R(w1, w1) ⊢ x1 = x2 → R(x1, x2).

1 x1 = x2, ∀w1R(w1, w1) | x1 = x2 REF

2 | x1 = x1 Eq1

3 x1 = x2, ∀w1R(w1, w1) | (x1 = x1 ∧ x1 = x2) AND, 1, 2

4 | ∀w1, w2, w3, w4 ((w1 = w3 ∧ w2 = w4) → (R(w1, w2) → R(w3, w4))) Eq4

5 | ∀w2, w3, w4 ((x1 = w3 ∧ w2 = w4) → (R(x1, w2) → R(w3, w4))) ∀O, 4

6 | ∀w3, w4 ((x1 = w3 ∧ x1 = w4) → (R(x1, w2) → R(x1, w4))) ∀O, 5

7 | ∀w4 ((x1 = x1 ∧ x1 = w4) → (R(x1, x1) → R(x1, w4))) ∀O, 6

8 | ((x1 = x1 ∧ x1 = x2) → (R(x1, x1) → R(x1, x2))) ∀O, 7

9 x1 = x2, ∀w1R(w1, w1) | (R(x1, x1) → R(x1, x2)) MP, 3, 8

10 x1 = x2, ∀w1R(w1, w1) | ∀w1R(w1, w1) REF

11 x1 = x2, ∀w1R(w1, w1) |R(x1, x1) ∀O, 10

12 x1 = x2, ∀w1R(w1, w1) |R(x1, x2) MP, 9, 11

13 ∀w1R(w1, w1) | x1 = x2 → R(x1, x2) IMR, 12
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B8. The Compactness Theorem: For L a language and Γ ⊆ FL, Γ is satisfiable
iff every finite subset of Γ is satisfiable.

Suppose on the contrary that there was such a sentence θ. Let Γ be the set of
sentences {θ} ∪ {¬φn |n ∈ N+} of L where φn is the sentence

∃w1, w2, . . . , wn∀wn+1

n∨

i=1

R(wi, wn+1).

Let ∆ be a finite subset of Γ, so there is an m ∈ N+ such that if ¬φi ∈ ∆ then
i ≤ m. So ∆ ⊆ {θ} ∪ {¬φi | 1 ≤ i ≤ m}. Let M be the structure for L such that
|M | = {1, 2, 3, . . . , m+ 1} and

RM = {〈i, i〉 | 1 ≤ i ≤ m+ 1}.

Then M |= θ since M has a finite cover, namely {1, 2, . . . , m+ 1}. Also φn fails
in M for n ≤ m since for any j1, j2, . . . , jn ∈ |M |,

M 2

n∨

i=1

R(ij, k)

for any k from the non-empty set

|M | − {j1, j2, . . . , jn} = {1, 2, . . . , m+ 1} − {j1, j2, . . . , jn},

non-empty because

m+ 1 = |{1, 2, . . . , m+ 1}| > m ≥ n ≥ |{j1, j2, . . . , jn}|.

Hence M is a model of ∆.

∴ By the above Compactness Theorem Γ is satisfied in some structure K for
L. Hence K |= θ so by assumption K has a finite cover, {a1, a2, . . . , an} say.
Therefore

K |= ∀wn+1

n∨

i=1

R(ai, wn+1)

and hence

K |= ∃w1, w2, . . . , wn∀wn+1

n∨

i=1

R(wi, wn+1),

i.e. K |= φn. But this is a contradiction since K |= Γ and ¬φn ∈ Γ. We conclude
that no such θ can exist, as required.
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