MATH43001/63001, January 2011 Exam, Solutions!

Al. (i) f(xy, f(z1,29)) € TL since x1, 29 € TL by Tel, so f(xy,22) € TL by
Te2 and f(xq, f(x1,22)) € TL by Te2 again.

(ii) f((f(z1,x2),21) ¢ TL since this word has different numbers of right and left
round brackets and we can prove by induction on |t| that any ¢ € T'L has the same
number. [Not necessary to give the proof but for the record: Clearly true if ¢ is a
constant or free variable z; (when there are zero of either) and if t = f(¢1,...,t,)
then the number of ‘(" in ¢ equals 1 plus the number in t;,...,t,, equals 1 plus
the number of ‘)’ in ¢4, ..., t,, by inductive hypothesis, equals the number of ‘)’
in t.]

(ili) Vwy ~R(wy,x1) € FL since R(x2, 1) € FL by L1, so =R(z2,21) € FL by
L2, and finally then Vw; =R(wy,x;) € FL by L3.

(iv) Ywy, = R(ws, 1) ¢ FL since we can prove by induction on |6 for 6 € F'L that
if wy occurs in @ then so does either Jws or Yws, which rules out Vw; = R(ws, x1)
being in FL. [Again no need to prove this but for the record: Clearly true,
vacuously, for R(t1,ts), and if it holds for ¢, v then it holds for =, (¢ A ), (¢ V
¥), (¢ — ). Also if it holds for n and 1 does not mention wj, if j # 2 then it
holds for Jw; n(w,/x;) and Yw; n(w;/x;), whilst if j = 2 then the condition holds
trivially for Jwq n(we/x;) and Ywy n(we/x;).]

(V) M ): VwNwz (R(wl, UJQ) — R(UJQ, wl)) <~
for all n,m € NT_ if n < m then m < n,

which is false since, e.g. 1 < 2 but 2 £ 1.

(vi) M | JwVwy = R(ws, f(wy,wy)) <
there is an n € NT such that for all m € N*, m £ nm,

which is true when we take n = 1 since m < 1 x m for any m € N*,

(Vll) M ): le (R(U)l, f(wl, wl)) — va R(’wz, f(wl, ’wz))) <~
for all n € N*, if n < n? then for all m € N*, m < nm.

This is true since if n € N* and n < n? then n > 1 so m < nm for m € N*,
Or(x1, x2) = R(f (21, 21), 22)
(1, 22) = (2 R(21, 22) A = R(22, 21))
Qg(xl,:pg) (R(x1,m9) A =3wy (R(x1,wy) A R(wy, x2)))
O4(w1, w2) = Fw: O2(f (21, w1), w2) = Fwy (R(f (21, w1), x2) A = R(w2, f(21,w1)))

¢ = YwFwy R(wy, f(wy, ws)) (since this fails in K when w; = 0).

I'These solutions are more detailed than I would expect in the exam. That’s because I want
them to also serve an educational purpose when given with ‘last year’s paper’ next year(!)
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A2. A suitable logical equivalent (there are many possibilities here) in PNF is
va le (P(UJQ) — —|R(w1))

It is enough to just write this down for the marks but for the record we could
argue:
—3w; R(wy) = Vw; =R(w;) and Jw; P(wy) = Jws P(ws)

by the ‘Useful Equivalents’ (UEs for short).
(Fwy P(wy) — —3Jwy R(w)) = (Jwy P(wg) — Yw; ~R(w)) by Lemma 1,

", (le P(wl) — —E|w1 R(wl)) = va (P(’wz) — le —|R(w1))
by UEs and transitivity of =. Also by UEs,

(P(x2) = Yy —R(wy)) =V (P(22) — —R(w1))
so by Lemma 1,
Vwy (P(wg) — Ywy ~R(wy)) = YwoVw; (P(wse) — —R(w))
and the result follows by transitivity of =.

A3. A formal proof of Jw; O(w,) — ¢ = Vw; (0(wy) — ¢) where w; does not
occur in ¢:

1L B(z1), Fwib(wr) — ¢ | FJwib(wr) — ¢ REF
2 O(x1), Jwb(wy) — ¢|0(x) REF
3 O(x1), Jwb(wy) — ¢ | Fwi6(w) a1, 2
4 (1), Jwb(w) — @@ MP, 1,3
5 Jw10(wy) — | (0(x1) — @) IMR, 4
6 Jw10(wy) — ¢ | Ywy (0(wy) — @) VI, 5

A4. Completeness Theorem: For ' C FLand 0 € FL, '8 < T 6.
(a) Let M be the structure for L such that |[M| =N, PM = {n € N|n is even },
QM = {n € N|nisodd }. Then M | Vw; P(w;) — Yw; Q(w;) since M ¥
Vw; P(wy). However M F Vw; (P(w;) — Q(w;)) since 0 € N is even but not
odd. Hence

le P(wl) — le Q(wl) ¥ le (P(wl) — Q(wl))
and by the Completeness Theorem

Vwy P(wy) — Yw; Q(wy) ¥ Yw; (P(w) — Q(w)).
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(b) Let M be a structure for L and suppose that
M ): ‘v’wl‘v’wg (P(wl) vV Q(wg)) *

but
M ¥ Nw; P(wy) V 3ws Q(ws) 1

Then
M ¥ NYw, P(wy) and M F Jwy Q(ws).

Hence for some a € |M|, M ¥ P(a) and also M ¥ Q(a) since M ¥ Jws Q(ws).
Hence M ¥ P(a) vV Q(a). But this contradicts . Hence given » f must fail, so

VwNwQ (P(wl) V Q(wg)) ): le P(wl) V Elwg Q(wg)
and by the Completeness Theorem
VwNwz (P(wl) V Q(U)Q)) H le P(wl) V E|w2 Q(’wz)

A5.  (i)4(ii) ¥ (iii): Let M be the structure for L such that |M| = N and
RM = {{n,m) € N*|n < m}. Then (i) is true in M since for every n € N there
is m € N such that n < m and (ii) is true in M since 0 € N and m £ 0 for
every m € N. However M = R(0,1) since 0 < 1 but there is no n € N such that
M = R(0,n) A R(n,1), i.e. 0 <n < 1so (iii) fails in M.

(i)+(iii) # (ii): Let M be the structure for L with |[M| =R and R™ = {(n,m) €
R?|n < m}. Then (i) is true in M since for every r € R there is an s € R such
that r < s and (iii) is true in M since if r,s € R and r < s then there is a
t € R (for example (r + s)/2) such that » <t < s. However (ii) fails in M since

otherwise there would have to be some r € R such that for all s € R, s £ 7,
which is false (take s =r —1).

(ii)+(iii) # (i): Let M be the structure for L with |M| = {0} and RM = (). Then
for any s € |M], (0,s) ¢ RM so (ii) holds in M. Also since (s,7) ¢ RM for any
r,s € |[M|, M ¥ R(s,r) and M = R(s,r) — Jws (R(w,ws) A R(ws,ws)). Hence
(iii) holds in M. However (i) fails in M since for the only element of | M|, 0, there
is no s € |[M| such that M = R(0,s), i.e. (0,s) € RM.

B6. Claim For any ¢(Z) € FL and any a € |M|,
M* | ¢(d) <= M = ¢"(a)

where (as expected) ¢*(¥) is the result of replacing the relation symbol P every-
where in ¢(Z) by Q.

The claim is proved by induction on |¢| (for all @ simultaneously). If ¢(Z) =
R(z4y,...,x;,)) and R # P then ¢*(Z) = ¢(Z) and

M = ¢*(@) <= M= ¢(@) <= (a;,...,a;,,) € RY
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= (ai,...,a;,) € RM = M| ¢"(d) <= M* = ¢(a).
If R = P then
M E ¢* (@) <= M EQai,,...,a,) <= {ai,...,q;, )€ QM
= (a;,...,0;,) € P! —= M*'E= P(a,,...,a,) <= M* = ¢(a).

Assuming the result for ¢(z), n(Z), x(z;, ) (and noticing that ((¢(Z) An(Z)))* =
(*(Z) An*(Z)) we have

M E ' (@) An'(@) <= M (@) and M En'(d) <
— M (@) and M* (@) (by IndHyp) <= M* b 9(@) An(@)

and similarly for the other connectives. Also (noticing that (Jw; x(w;, &))" =
Fw; x* (wj, 7))
M = Jw; x*(w;,d) <= for some b € |M|, M = x*(b,d) <
<= for some b € |M|(= |M*|), M* |= x(b,a@) (by Ind.Hyp. <= M" = Jw; x(w;,a),
and similarly for y(z;, Z), completing the induction.

Now suppose that = 6(Z). Then for any structure M for L and assignment
T a, M* | 0(a) so by the claim M = 6*(a@). Hence | 6*(¥), as required.

The converse is not true, for example = Q(z1) V =Q(z1) but ¥ Q(z1) V ~P(x1).

B7. A proof of EqL(=),Vw; R(wy,wy) F 21 = 29 — R(xy, 23).

1 1 = g, Ywy R(wy,wy) |21 = 29 REF

2 |z = a1 Eql

3 1 = g, Ywi R(wy,wq) | (x1 =21 A2y = 29) AND, 1,2
4 | Vwy, we, w3, wy (w1 = wg Awg = wy) — (R(wy,wy) — R(ws,wy)))  Eq4

5 | Yws, ws, wy (17 = wz A wy = wy) — (R(z1,w2) — R(ws,wy))) VO, 4

6 | Vws, wy (1 = wg Az = wy) — (R(z1,ws) — R(xq,w4))) YO, 5

7 |Vwy (1 = 21 Axy = wy) — (R(x1,21) — R(xq,w4))) VO, 6

8 | (1 =21 Ay = x9) — (R(21, 1) — R(21,22))) VO, 7

9 1 = 9, Ywy R(wy,wq) | (R(z1,21) — R(xy1,22)) MP, 3,8
10 1 = g, Ywy R(wy,wq) | Vwy R(wq,w) REF

11 1 = 9, Ywy R(wy,wy) | R(xq,x1) VO, 10
12 1 = Ta, Ywy R(wy,wy) | R(xq, x2) MP, 9,11
13 Vwy R(wy, wq) | 21 = 29 — R(xq,x2) IMR, 12



B8. The Compactness Theorem: For L a language and I' C F'L, I is satisfiable
iff every finite subset of I' is satisfiable.

Suppose on the contrary that there was such a sentence 6. Let I be the set of
sentences {0} U {—¢, | n € Nt} of L where ¢, is the sentence

n
Fwy, wa, . .., W VW, \/ R(w;, wpy1).
i=1

Let A be a finite subset of I'; so there is an m € N+ such that if =¢; € A then
i<m. SoAC{0}U{—¢;|1 <i<m}. Let M be the structure for L such that
IM| ={1,2,3,...,m+ 1} and

RM = {(i,i)|1<i<m+1}.

Then M = 0 since M has a finite cover, namely {1,2,...,m + 1}. Also ¢, fails
in M for n < m since for any ji, ja, ..., Jn € | M|,

M ¥ \n/R(z'j,k)

i=1

for any k from the non-empty set
M| —{j1,52, - dn} ={1,2,...om+1} = {j1, 92, - - s Jn},
non-empty because
m+1={1,2,....m+1}>m>n>{ji,J2,-- - Jn}l

Hence M is a model of A.

.. By the above Compactness Theorem I' is satisfied in some structure K for
L. Hence K = 6 so by assumption K has a finite cover, {aj,as,...,a,} say.
Therefore

K = Ywn \/ R(ai, wny)
i=1
and hence .
K | Jwy,ws, ..., w,Yw, 1 \/ R(w;, wpny1),
i=1
i.e. K |= ¢,. But this is a contradiction since K = I' and —¢,, € I'. We conclude
that no such @ can exist, as required.



