Two and a half hours

UNIVERSITY OF MANCHESTER

PREDICATE LOGIC

17th January 2011 9.45 – 12.15

Answer **ALL** questions in Section A and **TWO** questions in Section B.

A list of axioms and rules of proof is appended to this examination paper

Calculators may be used but only if they cannot store text.

SECTION A

Answer $\underline{\mathbf{ALL}}$ five questions

A1. Let the language L have a binary relation symbol R and binary function symbol f. Which of the following are terms of L? You should justify your answers.

- (i) $f(x_1, f(x_1, x_2))$
- (ii) $f((f(x_1, x_2), x_1))$

Which of the following are formulae of L? You should justify your answers.

- (iii) $\forall w_1 \neg R(w_1, x_1)$
- (iv) $\forall w_1 \neg R(w_2, x_1)$

Let M be the structure for L with $|M| = \mathbb{N}^+ = \{1, 2, 3, \ldots\}, f^M(n, m) = nm$,

 $R^M = \{ \langle n, m \rangle \in |M|^2 \mid n < m \}.$

Which of the following sentences of L are true in M?

- (v) $\forall w_1 \forall w_2 \left(R(w_1, w_2) \rightarrow R(w_2, w_1) \right)$
- (vi) $\exists w_1 \forall w_2 \neg R(w_2, f(w_1, w_2))$
- (vii) $\forall w_1 (R(w_1, f(w_1, w_1)) \to \forall w_2 R(w_2, f(w_1, w_2)))$

Find formulae $\theta_1(x_1, x_2)$, $\theta_2(x_1, x_2)$, $\theta_3(x_1, x_2)$, $\theta_4(x_1, x_2)$ of L such that for $n, m \in |M|$,

$M \models \theta_1(n,m)$	\iff	$n^2 < m$
$M \models \theta_2(n,m)$	\iff	n = m
$M \models \theta_3(n,m)$	\iff	n+1=m
$M \models \theta_4(n,m)$	\iff	n divides m

Let K be the structure for L with $|K| = \mathbb{N} = \{0, 1, 2, 3, \ldots\}, f^{K}(n, m) = nm,$

$$R^K = \{ \langle n, m \rangle \in |K|^2 \mid n < m \}.$$

Find a sentence ϕ of L such that $M \models \phi$ and $K \nvDash \phi$.

[24 marks]

A2. Write down a sentence in Prenex Normal Form logically equivalent to

$$(\exists w_1 P(w_1) \to \neg \exists w_1 R(w_1)).$$

[4 marks]

A3. Give a formal proof of

$$\exists w_1 \, \theta(w_1) \to \phi \vdash \forall w_1 \, (\theta(w_1) \to \phi)$$

where w_1 does not occur in ϕ .

[8 marks]

A4. State the Completeness Theorem. Using this theorem or otherwise show that

- (a) $\forall w_1 P(w_1) \rightarrow \forall w_1 Q(w_1) \nvDash \forall w_1 (P(w_1) \rightarrow Q(w_1))$
- (b) $\forall w_1 \forall w_2 (P(w_1) \lor Q(w_2)) \vdash \forall w_1 P(w_1) \lor \exists w_2 Q(w_2)$

where P Q are unary relation symbols.

[10 marks]

A5. Let L be the language with a single binary relation symbol R. Show that no two of the following sentences of L logically imply the third:

(i)
$$\forall w_1 \exists w_2 R(w_1, w_2)$$

(ii)
$$\exists w_1 \forall w_2 \neg R(w_2, w_1)$$

(iii) $\forall w_1 \forall w_2 (R(w_1, w_2) \to \exists w_3 (R(w_1, w_3) \land R(w_3, w_2)))$

[10 marks]

SECTION B

Answer $\underline{\mathbf{TWO}}$ of the three questions

B6. Let *L* be a relational language and let *P* and *Q* be relation symbols of *L* of the same arity. For any $\phi(\vec{x}) \in FL$ let $\phi^*(\vec{x})$ denote the formula of *L* which results by replacing *P* everywhere in $\phi(\vec{x})$ by *Q*. For *M* a structure for *L* let M^* be the structure for *L* such that $|M^*| = |M|$, $R^{M^*} = R^M$ for *R* a relation symbol of *L* different from *P* whilst $P^{M^*} = Q^M$. Show that for any $\vec{a} \in |M|$,

$$M \models \phi^*(\vec{a}) \iff M^* \models \phi(\vec{a}).$$

Hence show that if $\theta(\vec{x}) \in FL$ and $\models \theta(\vec{x})$ then $\models \theta^*(\vec{x})$. Is the converse true? You should justify your answer.

[12 marks]

B7. Give a formal proof that

$$EqL(=), \ \forall w_1 R(w_1, w_1) \vdash x_1 = x_2 \to R(x_1, x_2).$$

[12 marks]

B8. State the Compactness Theorem.

Let L be the language with the single binary relation symbol R. For M a structure for L we say M has a *finite cover* if there is a finite set $A \subseteq |M|$ such that for each $b \in |M|$ there is an $a \in A$ such that $M \models R(a, b)$. Show that there can be no sentence θ of L such that for any structure M for L,

 $M \models \theta \iff M$ has a finite cover.

[12 marks]

The Rules of Proof and Axiom for the Predicate Calculus

And In (AND)	$\frac{\Gamma \theta, \Delta \phi}{\Gamma \cup \Delta \theta \wedge \phi}$	
And Out (AO)	$\frac{\Gamma \mid \theta \land \phi}{\Gamma \mid \theta} \qquad \qquad \frac{\Gamma \mid}{\Gamma}$	$\frac{ \theta \wedge \phi }{\Gamma \phi }$
Or In (ORR)	$\frac{\Gamma \mid \theta}{\Gamma \mid \theta \lor \phi} \qquad \qquad \frac{\Gamma}{\Gamma}$	$\frac{\Gamma \mid \theta}{\mid \phi \lor \theta}$
Disjunction (DIS)	$\frac{\Gamma, \theta \psi, \Delta, \phi \psi}{\Gamma \cup \Delta, \theta \lor \phi \psi}$	
Implies In (IMR)	$\frac{\Gamma, \theta \phi}{\Gamma \theta \to \phi}$	
Modus Ponens (MP)	$\frac{\Gamma \mid \theta, \ \Delta \mid \theta \to \phi}{\Gamma \cup \Delta \mid \phi}$	
Not In (NIN)	$\frac{\Gamma, \theta \phi, \Delta, \theta \neg \phi}{\Gamma \cup \Delta \neg \theta}$	
Not Not Out (NNO)	$\frac{\Gamma \mid \neg \neg \theta}{\Gamma \mid \theta}$	
Monotonicity (MON)	$\frac{\Gamma \mid \theta}{\Gamma \cup \Delta \mid \theta}$	
All In $(\forall I)$	$\frac{\Gamma \mid \theta}{\Gamma \mid \forall w_j \theta(w_j/x_i)}$	where x_i does not occur in any formula in Γ and w_j does not occur in θ
All Out $(\forall O)$	$\frac{\Gamma \forall w_j \theta(w_j, \vec{x})}{\Gamma \theta(t(\vec{x}), \vec{x})}$	for $t(\vec{x}) \in TL$
Exists In $(\exists I)$	$\frac{\Gamma \mid \theta}{\Gamma \mid \exists w_j \theta'}$	where θ' is the result of replacing any number of occurences of the term $t(\vec{x})$ in θ by w_j and w_j does not occur in θ .
Exists Out $(\exists O)$	$\frac{\Gamma, \phi \theta}{\Gamma, \exists w_j \phi(w_j/x_i) \theta}$	where x_i does not occur in θ nor any formula in Γ and w_i does not occur in ϕ .
REF	$\Gamma \mid \theta \; \text{ whenever } \theta \in \Gamma.$	· · ·

The Equality Axioms, Eq

Eq1 $\forall w_1 w_1 = w_1$

Eq2 $\forall w_1, w_2 (w_1 = w_2 \rightarrow w_2 = w_1)$

Eq3 $\forall w_1, w_2, w_3 ((w_1 = w_2 \land w_2 = w_3) \rightarrow w_1 = w_3)$

Eq4

$$\forall w_1, \dots, w_{2r} \left(\left(\bigwedge_{i=1}^r w_i = w_{r+i} \right) \to \left(R(w_1, w_2, \dots, w_r) \leftrightarrow R(w_{r+1}, w_{r+2}, \dots, w_{2r}) \right) \right)$$
for *R* an *r*-ary relation symbol of *L*.

$\mathbf{Eq5}$

$$\forall w_1, \dots, w_{2r} \left(\left(\bigwedge_{i=1}^r w_i = w_{n+i} \right) \to f(w_1, w_2, \dots, w_r) = f(w_{r+1}, w_{r+2}, \dots, w_{2r}) \right)$$

for f an r-ary function symbol of L.

Eq6

$$\forall w_1, \dots, w_{2r} \left(\left(\bigwedge_{i=1}^r w_i = w_{r+i} \right) \to t(w_1, w_2, \dots, w_r) = t(w_{r+1}, w_{r+2}, \dots, w_{2r}) \right)$$

for $t(x_1, x_2, \ldots, x_r) \in TL$.

Eq7

$$\forall w_1, \dots, w_{2r} \left(\left(\bigwedge_{i=1}^r w_i = w_{r+i} \right) \to \left(\theta(w_1, w_2, \dots, w_r) \leftrightarrow \theta(w_{r+1}, w_{r+2}, \dots, w_{2r}) \right) \right)$$

for $\theta(x_1, x_2, \ldots, x_r) \in FL$.

END OF EXAMINATION PAPER