
MATH33001, January 2013 Exam, Solutions1

A1. This does not follow since even given the premises the truth of the conclusion depends
on the meaning of ‘bird’, ‘lays eggs’ etc. To see this set B(x) to mean ‘x is a bird’, E(x) to
mean ‘x lays eggs’ and S(x) to mean ‘x is a swan’. Then when the variable ranges over, say,
creatures, the argument becomes

∃w1 (B(w1) ∧ E(w1))
∀w1 (S(w1) → B(w1))

∴ ∀w1 (S(w1) → E(w1))

But this conclusion is not necessarily true for any interpretation of B,E, S etc. which make
the premises true (for example if we just change E(x) here to mean ‘x cannot fly’) so the
‘argument’ is not valid.

[An alternative interpretation here is to have B,E as before but treat ‘swans’ as a single
species, rather than a family, and denote it by a constant symbol, s. The argument then
becomes

∃w1 (B(w1) ∧ E(w1))
B(s)

∴ E(s))

Replacing ‘lays eggs’ by ‘cannot fly’ again shows that the argument is not valid. ]

A2. (i) f(w1) /∈ TL since this word contains a bound variable (w1) and we can prove by
induction on |t| that no term t of L can contain a bound variable. [Not necessary to give the
proof but for the record: Clearly true if t is a constant or free variable xi and if t = f(t1) and
no bound variable occurs in t1 then none will occur in t either.]

(ii) f)x1(/∈ TL since no term can end with (. [Not necessary to give the proof but for the
record: Clearly true if t is a free variable xi and if t = f(t1) then t ends in ), so not in (. Hence
the assertion is true for all t ∈ TL by induction on |t|.]

(iii) ∃w2(R(w2, x1) → ∀w1R(w1, x1)) ∈ FL since R(x2, x1) ∈ FL by L1, so ∀w1R(w1, x1) ∈ FL
by L3. By L2 then (R(x2, x1) → ∀w1R(w1, x1)) ∈ FL and finally by L3 ∃w2((R(w2, x1) →
∀w1R(w1, x1)) ∈ FL.

(iv) (¬∃w1R(x1, x1)) /∈ FL since we can prove by induction on |θ| for θ ∈ FL that the number
of left round brackets ‘(’ in θ equals the number of relation, function and binary connective
(i.e. ∧,∨,→) symbols occurring in θ and this is not the case for (¬∃w1R(x1, x1)). [Again it is
not necessary to prove this but, for the record, such a proof could go as follows: We first prove
it for terms t ∈ TL (where of course there are are no relation symbols nor connectives) by
induction on |t|. Moving on to formulae it is clearly true for R(t1, t2) since it is true for t1, t2
and along with R we introduce one new ‘(’. Finally, by inspection we can see that if it holds
for φ, ψ ∈ FL then it holds for ¬φ, (φ∧ψ), (φ∨ψ), (φ→ ψ), ∃wj ψ(wj/xi) and ∀wj ψ(wj/xi)
(assuming here of course that wj does not already occur in ψ).]

(v) M |= ∀w1R(w1, f(w1)) ⇐⇒ for all n ∈ N+, 〈n, fM(n)〉 ∈ RM

⇐⇒ for all n ∈ N+, n|fM(n)
⇐⇒ for all n ∈ N+, n|n+ 1

1These solutions are more detailed than I would expect in the exam. That’s because I want them to also
serve an educational purpose when given with ‘last year’s paper’ next year(!)
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which is not true, for example 2 ∤ (2 + 1). [In your exam script it is enough to simply give an
answer ‘true’/‘false’, similarly with parts (vi),(vii).]

(vi) M |= ∀w1∃w2(R(w1, w2) ∧ ¬R(w2 ∧ w1))
⇐⇒ for each n ∈ N+ there is an m ∈ N+ such that 〈n,m〉 ∈ RM and

〈m,n〉 /∈ RM

⇐⇒ for each n ∈ N+ there is an m ∈ N+ such that n|m and m ∤ n

which is true since for each n ∈ N+, n|2n but 2n ∤ n.

(vii) M |= ∃w1∀w2∀w3 (R(w2, w1) ∧R(w3, w1)) → (R(w2, w3) ∨ R(w3, w2))

⇐⇒ there is n ∈ N+ such that for any m, k ∈ N+ if 〈m,n〉,
〈k, n〉 ∈ RM then either 〈m, k〉 ∈ RM or 〈k,m〉 ∈ RM

⇐⇒ there is n ∈ N+ such that for any m, k ∈ N+ if m|n and
k|n then either m|k or k|m.

which is true since for n = 2 it is the case that for any two divisors m, k of 2, either m|k or
k|m.

θ1(x1) = ∀w1R(x1, w1)

θ2(x1, x2) = (R(x1, x2) ∧R(x2, x1))

θ3(x1) = ∃w2 (∀w1R(w2, w1) ∧ ¬R(f(w2), x1))

θ4(x1) = ∃w2 (∀w1R(w2, w1) ∧ ∀w3 (R(w3, x1) → (R(w3, w2) ∨ R(f(w2), w3))))

φ = ∀w1R(w1, f(w1)) (since always n ≤ n+ 1, so this holds in K, but by (v) does not hold in
M).

A3. A (formal) proof (in PC) is a sequence of sequents

Γ1 | φ1, Γ2 | φ2 . . . ,Γm | φm

where the Γi are finite subsets of FL, the φi ∈ FL and for i = 1, 2, . . . , m, either Γi | φi is an
instance of REF or there are some j1, j2, . . . , js < i such that

Γj1 | φj1, Γj2 | φj2, . . . ,Γjs | φjs

Γi | φi

is an instance of one of the rules of proof.

A formal proof of ∀w1 P (w1) ⊢ ∀w1∀w2 (P (w1) ∧ P (w2)) :

1 ∀w1 P (w1) | ∀w1 P (x1) REF

2 ∀w1 P (w1) |P (x1) ∀O 1

3 ∀w1 P (w1) |P (x2) ∀O 1

4 ∀w1 P (w1) | (P (x1) ∧ P (x2)) AND 2, 3

5 ∀w1 P (w1) | ∀w2 (P (x1) ∧ P (w2)) ∀I 4

6 ∀w1 P (w1) | ∀w1∀w2 (P (w1) ∧ P (w2)) ∀I 5

A4. Completeness Theorem: For Γ ⊆ FL and θ ∈ FL, Γ ⊢ θ ⇐⇒ Γ |= θ.

(a) Let M be a structure for L and suppose that

M |= ∃w1∀w2 (R(w1, w2) ∨R(w2, w1)),
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so for some a ∈ |M |,
M |= ∀w2 (R(a, w2) ∨ R(w2, a)),

equivalently for all b ∈ |M |, M |= R(a, b) ∨ R(b, a). Taking b = a here gives M |= R(a, a) ∨
R(a, a) so M |= R(a, a) and M |= ∃w1R(w1, w1). This shows that

∃w1∀w2 (R(w1, w2) ∨ R(w2, w1)) |= ∃w1R(w1, w1)

and so by the Completeness Theorem,

∃w1∀w2 (R(w1, w2) ∨R(w2, w1)) ⊢ ∃w1R(w1, w1).

(b) Let M be the structure for L such that |M | = {0, 1}, RM = { 〈0, 1〉, 〈1, 0〉}. Then M |=
R(0, 1) and M |= R(1, 0) so M |= ∃w2R(0, w2) and M |= ∃w2R(1, w2), and hence since
|M | = {0, 1}, M |= ∀w1∃w2R(w1, w2). However since 〈0, 0〉, 〈1, 1〉 /∈ RM , M 2 R(0, 0) and
M 2 R(1, 1) and hence M 2 ∃w1R(w1, w1). This shows that

∀w1∃w2R(w1, w2) 2 ∃w1R(w1, w1)

and by the Completeness Theorem it follows that

∀w1∃w2R(w1, w2) 0 ∃w1R(w1, w1).

It is not the case that R(x1, x1) ≡ R(x2, x2) since letM be the structure with |M | = {1, 2} and
RM = {〈1, 1〉}. Then for the assignment x1 7→ 1, x2 7→ 2 R(x1, x1) is true in M but R(x2, x2)
is not. Hence R(x1, x1) ≡/ R(x2, x2).

B5. (i)+(ii) 2 (iii): Let M be the structure for L such that |M | = {0} and PM = {0},
fM(0) = 0. Then (i) is true in M since M |= P (f(0)), so M |= P (0) → P (f(0)). Also M |=
(ii) since M |= P (f(0)), so M |= ¬P (0) ∨ P (f(0)). However (iii) fails to hold in M since
f(0) = 0 and M |= P (f(0)) so M 2 ∃w1 ¬P (f(w1)).

(i)+(iii) 2 (ii): Let M be the structure for L with |M | = {0, 1, 2} and PM = {1}, fM(0) =
fM(1) = 1, f(2) = 2. Then M |= (i) since M 2 P (0), M 2 P (2) so M |= P (0) → P (f(0)),
M |= P (2) → P (f(2)), and M |= P (f(1)) so M |= P (1) → P (f(1)). Also M |= (iii) since
M |= ¬P (f(2)). However M 2 (ii) since M 2 P (0) and M 2 ¬P (f(0)) (because f(0) = 1 and
M |= P (1)).

(ii)+(iii) 2 (i): Let M be the structure for L with |M | = {0, 1} and PM = {0}, fM(0) =
fM(1) = 1. Then M |= P (0) and M |= ¬P (f(1)) (since fM(1) = 1 and M 2 P (1)) so
M |= P (0) ∨ ¬P (f(0)) and M |= P (1) ∨ ¬P (f(1)). Hence M |= (ii). Also M |= (iii) since
M |= ¬P (f(1)). However M |= P (0) and M 2 P (f(0)) (since f(0) = 1) so M 2 P (0) →
P (f(0)) and in turn M 2 (i).

B6. A formal proof of

∀w1∀w2 (P (w1) ∨Q(w2)) ⊢ ∃w1 ¬P (w1) → ∀w2Q(w2) :
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1 ∀w1∀w2 (P (w1) ∨Q(w2)) | ∀w1∀w2 (P (w1) ∨Q(w2)) REF

2 ∀w1∀w2 (P (w1) ∨Q(w2)) | ∀w2 (P (x1) ∨Q(w2)) ∀O, 1

3 ∀w1∀w2 (P (w1) ∨Q(w2)) |P (x1) ∨Q(x2) ∀O, 2

4 ¬Q(x2), ¬P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) | ¬P (x1) REF

5 ¬Q(x2), P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) |P (x1) REF

6 P (x1), ¬P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) | ¬¬Q(x2) NIN, 4, 5

7 P (x1), ¬P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) |Q(x2) NNO, 6,

8 Q(x2), ¬P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) |Q(x2) REF

9 P (x1) ∨Q(x2), ¬P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) |Q(x2) DIS, 7, 8

10 ¬P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) | (P (x1) ∨Q(x2)) → Q(x2) IMR, 9

11 ¬P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) |Q(x2) MP, 3, 10

12 ¬P (x1), ∀w1∀w2 (P (w1) ∨Q(w2)) | ∀w2Q(w2) ∀I, 11

13 ∃w1 ¬P (w1), ∀w1∀w2 (P (w1) ∨Q(w2)) | ∀w2Q(w2) ∃O, 12

14 ∀w1∀w2 (P (w1) ∨Q(w2)) | ∃w1¬P (w1) → ∀w2Q(w2) IMR, 12

B7. The Compactness Theorem: For Γ ⊆ FL, Γ is satisfiable in a structure for L iff every
finite subset of Γ is satisfiable in a structure for L.

Assume on the contrary that such a sentence θ did exist and consider the set of sentences of
L:

Γ = {θ} ∪ {¬∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2) |n ∈ N+ }.

We first show that every finite subset of Γ is satisfiable. Let ∆ ⊆ Γ be finite. So there is an
m ∈ N+ such that if

¬∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2)

appears in ∆ then n ≤ m. Let K be the finite structure for L with |K| = {1, 2, . . . , m,m+ 1}
and

TK = {〈i, j, j〉 | 1 ≤ i, j ≤ m+ 1}.

Clearly K is finitely separated, by the set A = {1, 2, . . . , m+1}, and indeed this is the only set
which effects the separation since for each 1 ≤ j ≤ m+ 1 the only n for which K |= T (j, n, j)
is j itself. Hence K |= θ and

K |= ¬∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2)

for each n ≤ m. So K |= ∆ and ∆ is satisfiable.

By the Compactness Theorem then Γ has a model, M say. Since M |= θ, M is finitely
separated, by A = {a1, a2, . . . , an} ⊆ |M | say. Then

M |= ∀wn+1, wn+2

n∨

i=1

T (wn+1, ai, wn+2)
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so

M |= ∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2).

But this is a contradiction since M |= Γ and

¬∃w1, . . . , wn∀wn+1, wn+2

n∨

i=1

T (wn+1, wi, wn+2) ∈ Γ.

Hence no such θ can exist.
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