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Introduction Broadly speaking Inductive Logic is the study of how to ra-
tionally or logically assign probabilities, subjective probabilities, to events on
the basis of some knowledge. Pure Inductive Logic is intended to address this
question in perhaps the simplest possible case, when there actually is no prior
contingent knowledge, just the uninterpreted context.

Of course we cannot expect such a study to immediately provide practical an-
swers but nevertheless it might well give us some insight into the more compli-
cated situations the real world presents to us – and in any case if we cannot
provide answers in this very simplified case whyever should we expect to do
better when things become more complicated?

In the tradition of the subject as originally presented by W.E.Johnson and
R.Carnap in the 1920’s-40’s (see [2], [3], [4], [16]) we shall initially take this
basic, simple, context to be a first order structure M for the language Lq with
just countably many constant symbols an, n ∈ N+ = {1, 2, 3, . . .} and predicate
(i.e. unary relation) symbols Ri, i = 1, 2, . . . , q and such that the interpretation
of the an in M (which we shall also denote an) lists all the elements of the
universe of M (though not necessarily without repeats). In particular for these
notes we will not allow function symbols nor equality in the language L. For
future reference let SLq, QFSLq denote the sentences, quantifier free sentences
of Lq.

The question we are interested in can be thought of as follows:

Q: Given an agent A inhabiting M and θ ∈ SLq, rationally or
logically, what probability should A assign to θ?

More fully, since we can reasonably demand that to be rational these probabil-
ities for different θ ∈ SL should be coherent we are really asking what rational
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probability function w should A adopt? where w : SLq → [0, 1] is a probability
function on Lq if it satisfies that for all θ, φ, ∃xψ(x) ∈ SLq

(P1) � θ ⇒ w(θ) = 1.

(P2) θ � ¬φ ⇒ w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limn→∞ w(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)).

Condition (P3) is often referred to as Gaifman’s Condition, see [8], and is a
special addition to the conventional conditions (P1), (P2) appropriate to this
context. It intends to capture the idea that the a1, a2, a3, . . . exhaust the uni-
verse.

All the standard, simple, properties you’d expect of a probability function follow
from these (P1-3):

Proposition 1. Let w be a probability function on SL. Then for θ, φ ∈ SL,

(a) w(¬θ) = 1− w(θ).

(b) � ¬θ ⇒ w(θ) = 0.

(c) θ � φ ⇒ w(θ) ≤ w(φ).

(d) θ ≡ φ ⇒ w(θ) = w(φ).

(e) w(θ ∨ φ) = w(θ) + w(φ)− w(θ ∧ φ).

Proofs may be found in [24] or [26]. As usual for w a probability function on Lq
we take the corresponding conditional probability w(θ |φ) to be a probability
function such that

w(θ |φ) · w(φ) = w(θ ∧ φ), i.e. w(θ |φ) =
w(θ ∧ φ)

w(φ
if w(φ) > 0.

With this in mind the question becomes:

Q: Given an agent A inhabiting M , rationally or logically, what
probability function w should A adopt?

It should be emphasized here that otherwise A knows nothing about M , s/he
has no particular interpretation in mind for the constants and predicates.

On the face of it it might appear that because of the great diversity of sentences
in SLq probability functions would be very complicated objects and not easily
described. In fact this is not the case as we shall now explain. The first step in
this direction is the following theorem of Gaifman, [8]:1

1For a proof in the notation of these tutorials see Theorem 7 of [24].
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Theorem 2. Suppose that w : QFSLq → [0, 1] satisfies (P1) and (P2) for
θ, φ ∈ QFSLq. Then w has a unique extension to a probability function on SLq
satisfying (P1),(P2),(P3) for any θ, φ,∃xψ(x) ∈ SLq.

To give an example of a very simple probability function let

~c ∈ D2q = {〈x1, x2, . . . , x2q 〉 |xi ≥ 0,

2q∑
i=1

xi = 1}

and define w~c for the atoms α1, . . . , α2q , that is for the 2q formulae of the form

±R1(x) ∧ ±R2(x) ∧ . . . ∧ ±Rq(x),

by
w~c(αj(ai)) = cj , j = 1, 2, . . . , 2q.

Notice that knowing which atom ai satisfies already tells us everything there is
to know about ai per se.

Extend w~c to state descriptions, that is conjunctions of atoms, by setting, e.g.,

w~c(αh1
(a1) ∧ αh2

(a2) ∧ . . . ∧ αhn
(an)) = w~c(αh1

(a1))× w~c(αh2
(a2))× . . .× w~c(αhn

(an)))

= ch1
× ch2

× . . .× chn

=

n∏
j=1

chj
=

2q∏
k=1

cmk

k where mk = |{j |hj = k}|.

By the Disjunctive Normal Form Theorem any θ ∈ QFSLq is logically equiva-
lent to a disjunction of state descriptions, say,

θ(a1, a2, . . . , an) ≡
s∨

k=1

n∧
i=1

αhik
(ai)

and we can extend w~c to QFSLq by setting

w~c(θ) = w~c

(
s∨

k=1

n∧
i=1

αhik
(ai)

)

=

s∑
k=1

w~c

(
n∧
i=1

αhik
(ai)

)

=

s∑
k=1

n∏
i=1

w~c(αhik
(ai))

=

s∑
k=1

n∏
i=1

chik
.
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From this example it should be clear that to specify a probability function it is
enough to specify its values simply on state descriptions.

The key word here in Q is ‘rational’, but what does that mean? Well, at the
present time we shall leave that to the reader’s intuition, we all seem to have an
appreciation of what we mean by rational, at least we certainly seem to recognize
irrational behavior when we see it! One useful way to make this notion more
concrete is to imagine that next door is another agent in the same situation as
A. These agents know nothing more of each other, nor can they communicate
but nevertheless they are endeavoring to assign the same probabilities. In this
case we might equate ‘rationally assign’ with this goal of conformity.

The method of answering this question Q within Pure Inductive Logic has been
(up to now) to propose principle of probability assignment which it would ar-
guably be irrational to flout and consider the restrictions they impose on the
agent A’s choice, and how these principles relate to each other. Ideally one
might hope there are such principles which are both widely accepted and whose
net effect is to determine A’s possible choices uniquely. In that case we might
feel justified in asserting that these principles define what we mean by ‘rational’
in this context.2 Unfortunately no such consensus seems to be currently within
sight, we have a number of principles which are ostensibly ‘rational’ to some
extent and rather than reinforcing each other they are sometimes even disjoint.

To date there have been three main sources of such principles:

• Symmetry: The idea that A’s choice should not break existing symme-
tries. For example in the absence of any additional information it would
be irrational to give the probability of a coin toss coming down heads any-
thing but one half since to do so would introduce an asymmetry between
heads and tails which was not there initially.

• Irrelevance: The idea that irrelevant information should have no effect.
For example the probability I would give to England winning the next
cricket series against India should not be influence by learning that it
rained today in Rome.

• Relevance: The idea that acquiring supporting evidence for a proposition
should cause one to increase one’s appraisal of its probability. For example
hearing that India are 2 for 4 in the first innings against England should
cause me to shorten the odds I’d give for an England victory.

Recently however we (Alex Hill, Liz Howarth, Alena Vencovská and myself)
have been looking at another source of such principles, Analogy, and this what
I’d like to say something about in these lectures. Before doing so however we
need to consider some symmetry principles which are so well accepted as to be
simply implicit basic assumptions in this subject.

2As we would argue happens in the propositional case, see [25].
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The Constant Exchangeability Principle, Ex3

For φ(a1, a2, . . . , am) ∈ SLq4 and (distinct) i1, i2, . . . , im ∈ N+,

w(φ(a1, a2, . . . , am)) = w(φ(ai1 , ai2 , . . . , aim)).

The rational justification here is that the agent has no knowledge about any
of the ai so it would be irrational to treat them differently when assigning
probabilities.5,

Constant Exchangeability is so widely accepted in this area that we will hence-
forth assume it throughout without further explicit mention.

The probability functions w~c satisfy Ex. Indeed they are exactly the probability
functions satisfying Ex and the

The Constant Irrelevance Principle

If θ, φ ∈ SL have no constant symbols in common then

w(θ ∧ φ) = w(θ) · w(φ),

equivalently
w(θ |φ) = w(θ).

For a proof of this see [26, Chapter 8]. The appellation ‘Irrelevance’ here obvious,
the fact that θ and φ only give information about completely disjoint sets of
constants is taken to mean that the probability of θ should not change if one
was to learn φ. [The fact that this requirement restricts w to such a small, and,
with the possible exclusion of w〈2−q,2−q,...,2−q〉, hardly rational set of probability
functions suggests that this principle possibly takes the idea of irrelevance too
far.]

Now that we have introduced this Constant Exchangeability Principle, Ex, we
would like to investigate what it entails, what follows from the assumption that
w satisfies Ex. Often a major step in PIL after one has formulated a principle
is to prove a representation theorem for the probability functions satisfying
that principle by showing that they must look like a combination of certain
‘simple building block functions’. There are such results for probability functions
satisfying Ex, the first of these, and historically the most important, being the
so call de Finetti’s Representation Theorem for the case of the unary language
Lq.

3Johnson’s Permutation Postulate and Carnap’s Axiom of Symmetry.
4The convention is that when a sentence φ is written in this form it is assumed (unless oth-

erwise stated) that the displayed constants are distinct and include all the constants actually
occurring in φ.

5The agent is not supposed to ’know’ that a1 comes before a2 which comes before . . . . .
in our list.

5



The following theorem due to Bruno de Finetti may be found in [7] (for a proof of
this result in the notation being used here see [24, Theorem 10] or [26, Chapter
9]).

De Finetti’s Representation Theorem 3. A probability function w on a
unary language Lq satisfies Ex just if it is a mixture of the w~x.

More precisely, just if

w =

∫
w~x dµ(~x)

for some countably additive measure µ on the Borel subsets of

{〈x1, x2, . . . , x2q 〉 | 0 ≤ x1, x2, . . . , x2q ,
∑
i

xi = 1}. (1)

On the face of it this theorem may seem to only be of interest to mathematicians,
it doesn’t seem to be saying much about induction or rationality which would be
of interest to a philosopher. However it yields consequences and observations
which surely are of interest in this regard. The mathematical power of this
theorem lies in the fact that it often enables us to translate questions about the
general probability function w on the left hand side of (1) into questions about
the very simple probability functions w~x on the right hand side. For example
by this simple device Humburg [14] showed the following result, originally due
to Gaifman [9]:

Theorem 4. Ex implies the:

(Extended) Principle of Instantial Relevance, PIR

For θ(a1, a2, . . . , an), φ(an+1) ∈ SLq,

w(φ(an+2) |φ(an+1) ∧ θ(a1, a2, . . . , an)) ≥ w(φ(an+1) | θ(a1, a2, . . . , an)). (2)

Proof. Let the probability function w on L satisfy Ex. Write just θ for
θ(a1, a2, . . . , an).

Then for µ the de Finetti prior for w,

w(θ) =

∫
D2q

w~x(θ) dµ(~x) = A say,

w(φ(an+1)∧θ) =

∫
D2q

w~x(φ(an+1)∧θ) dµ(~x) =

∫
D2q

w~x(φ(an+1))·w~x(θ) dµ(~x) = B say,

w(φ(an+2) ∧ φ(an+1) ∧ θ) =

∫
D2q

w~x(φ(an+1))2 · w~x(θ) dµ(~x),

and (2) amounts to
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(∫
D2q

w~x(φ(an+1)) · w~x(θ) dµ(~x)

)2

≤

(∫
D2q

w~x(θ) dµ(~x)

)
·
(∫

D2q

w~x(φ(an+1))2 · w~x(θ) dµ(~x)

)
(3)

If A = 0 then this clearly holds, so assume that A 6= 0.

Then multiplying out

0 ≤
∫
D2q

(
w~x(φ(an+1))A−

∫
D2q

w~x(φ(an+1) · w~x(θ) dµ(~x)

)2

w~x(θ) dµ(~x)

=

∫
D2q

(Aw~x(φ(an+1))−B)
2
w~x(θ) dµ(~x)

=

∫
D2q

(
A2w~x(φ(an+1))2 − 2ABw~x(φ(an+1)) +B2

)
w~x(θ) dµ(~x)

=

∫
D2q

A2w~x(φ(an+1))2w~x(θ) dµ(~x)− 2AB2 +AB2

and dividing by A gives (3), and the result follows.

From a philosopher’s point of view this is an interesting result (or at least it
should be!) because it confirms one’s intuition re induction that the more often
you’ve seen something in the past the more probable you should expect it to
be in the future. So this turns out to be simply a consequence of Ex. Whilst
one might claim, in accord with Hume [15], that Ex is really the assumption of
the uniformity of nature and in that sense can be equated with induction6 what
this argument does show is that if you think Ex rational then you should think
PIR rational.

It is also worth emphasizing here that we have this relevance principle is actually
a consequence of the symmetry principle Ex. This appears to be a common fea-
ture of PIL, that recognizably rational manifestations of relevance come simply
as derivatives of symmetry rather than fundamental notions in their own right.

In an exactly similar way to the Constant Exchangeability Principle Ex we can
justify another symmetry principle, the

Principle of Predicate Exchangeability, Px

For φ(P1, P2, . . . , Pm) ∈ SLq, where we explicitly display the predicate symbols
occurring in φ, and (distinct) 1 ≤ i1, i2, . . . , im ≤ q,

w(φ(P1, P2, . . . , Pm)) = w(φ(Pi1 , Pi2 , . . . , Pim)).

6The result does not go the other way however, see [29, footnote 6] for an example of a
probability function satisfying PIR but not Ex.
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Px differs from Ex in the sense that in Lq there are only finitely many predicates
to permute whereas there are infinitely many constants. However this will in
effect be remedied once we introduce our next rationality requirement.

Consider again our agent A inhabiting a structure for Lq and suppose that
A imagined that the language also contained predicate symbols in addition to
those in Lq. In that case would not A then wish to adopt a probability function
for that larger language which satisfied the same principle that s/he would have
considered rational for Lq alone? Surely yes!

But then can this wish of A actually be realized? The problem is that A might
follow his/her rational principles and pick the probability functions w on Lq
and w+ on the (imagined) extended language L+ and find that the restriction
of w+ to SL, denoted w+ �SLq, is not the same as w. In other words simply
by imagining being rational in L+ the agent would have discredited w. Indeed
looked at from this perspective w might seem a particularly bad choice if there
was no extension at all of w to L+ which satisfied the agent’s favored rational
principles.

To make this more concrete suppose the agent felt Ex + Px was the (only)
rational requirement that s/he was obliged to impose on his/her choice w. Then
it might be that the agent made such a choice only to realize that there was no
way to extend this probability function to a larger language and still maintain
having Ex + Px.

In fact this can happen for some bad choices of w, but fortunately it needn’t
happen, there will be choices of probability function for which there are no such
dead ends. These are the ones which satisfy:

Unary Language Invariance, ULi

A probability function w satisfies Unary Language Invariance if there is a family
of probability functions wr, one on each language Lr, containing w (so w = wq)
such that each member of this family satisfies Px and whenever p ≤ r then
wr �SLp = wp.

The w~c do not satisfy ULi, or even Px, except for rather special choices7 of ~c.
However many of the key (as far as PIL is concerned) mixtures of them do, for
example Carnap’s Continuum of Inductive Methods, see [1], and the Nix-Paris
Continuum, see [23] or [26].

To simplify some later results it will be useful to introduce one more symmetry
principle:

7For ULi the requirement is that

ci =

∫
[0,1]

yj(1 − y)q−j dµ(y)

for some measure µ on [0, 1], where j is the number of negations appearing in αi, see [18].
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The Strong Negation Principle, SN

For θ ∈ SLq,
w(θ) = w(θ′)

where θ′ is the result of replacing each occurrence of the relation symbol R in θ
by ¬R.

SN is essentially what is being used when we argue for rationality of the heads/tails
symmetry when we toss a coin, since not-heads is just tails. Viewed in this way
then SN seems, like Ex and Px, evidently rational.

We now turn our attention to the main goal of this tutorial, reasoning by anal-
ogy, or more precisely the investigation of ‘rational principles of analogical sup-
port’. Reasoning by analogy is often asserted to be the central method in many
traditional Eastern Logics, in particular the Navya-Nyaya logic of India8 and
the Late Mohist logic of China. And clearly it is also extremely widely adopted
‘on the street’, much more common in fact than ever applying the rules of the
Propositional or Predicate Calculi. For example if I know that my 10 year old
nephew enjoyed a Christmas party in the local swimming pool I might recom-
mend this possibility to a colleague who wishes to arrange a birthday party for
her 9 year old daughter.

Because of its ubiquity attempting to formalize what is meant by ‘analogical
support’, and in turn why it is rational or logical, has, over the years, received
much attention from philosophers in the context of Inductive Logic, for example
[3], [4], [5] [6], [17], [19], [20], [21], [22], [27], [28]. A common approach is
to relate the analogical support that αi(a1) gives to αj(a2) to the Hamming
distance |αi−αj | of the atom αi(x) from αj(x), where for αi(x) =

∧q
n=1R

εn
n (x),

αj(x) =
∧q
n=1R

δn
n (x),

|αi − αj | =
q∑

n=1

|εn − δn|,

the number of conjuncts Rn on which the atoms differ. In other words the ±Rn
which αj has in common with αi provide support for αi and those which they
do not have in common oppose αi. This idea leads to the

Principle of Analogical Support by Distance:

If θ(a1, a2, . . . , an) ∈ QFSLq and

|αi − αj | < |αi − αk|

then

w(αi(an+2) |αj(an+1) ∧ θ(~a)) ≥ w(αi(an+2) |αk(an+1) ∧ θ(~a)).

Unfortunately, as is shown in [11], even in the case of a language with just two
predicates i.e. L2, very few probability functions satisfy this principle together

8Which is precisely why I’m focusing on analogy in these tutorials!
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with the Principle of Strong Negation9 and our standing assumptions Ex and Px
and seemingly those are not ones that have much of a claim to being rational.
The choice becomes less still if we increase two predicates to three and indeed
there are then none at all if we make the inequality in the conclusion of this
principle strict. [See [10] for alternative, but no less disheartening, combinations
of initial symmetry assumptions.] Some hope of salvation here does currently
seem to exist if we restrict θ ∈ QFSLq here to being a state description, it is
not clear that version is so hard to fulfill (see [11]), however this does seem a
rather artificial restriction to place on θ in the circumstances.

In his article in the Stanford Encyclopedia of Philosophy Paul Bartha suggests a
Candidate Analogical Inference Rule based on the slogan ‘probabilistic support
for future similarities is an increasing function of known past similarities’

A natural attempt here is to take the ‘similarity’ to apply between constants:

The General Analogy Principle, GAP

For ~a = 〈a3, a4, . . . , ak〉 and ψ(a1,~a), φ(a1,~a) ∈ SL,

w(φ(a2,~a) |ψ(a1,~a) ∧ ψ(a2,~a) ∧ φ(a1,~a)) ≥ w(φ(a2,~a) |φ(a1,~a))

GAP then attempts to capture analogical support by similarity of properties

Theorem 5. Let w be a probability function on L satisfying Px + SN (+ Ex).
Then w satisfies GAP just if

w = c
Lq

0 = 2−q(w〈1,0,0,...,0〉 + w〈0,1,0,...,0〉 + . . . w〈0,...,0,0,1〉),

equivalently,
w
(
∀xαi(x)) = 2−q for i = 1, 2, . . . , 2q.

A proof of this result may be found in [13].

In summary then it appears that these previous two ways of measuring analog-
ical support miss the target. There is however another approach which is both
more general (since it applies also to polyadic rather than just unary languages)
and more closely captures our intuitions about what constitutes an analogy:

The Counterpart Principle, CP

For any θ ∈ SLq, if θ′ ∈ SLq is obtained by replacing some of the predicate and
constant symbols appearing in θ by (distinct) new ones not occurring in θ and
ψ ∈ SLq only mentions constant and predicate symbols common to both θ and
θ′ then

w(θ | θ′ ∧ ψ ) ≥ w(θ |ψ). (4)

9Where we require w to be fixed when we replace a relation symbol throughout a sentence
by its negation.
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The Counterpart Principle focuses on an alternative interpretation of analogy,
analogy by structural similarity, the structural similarity of θ′ to θ. We would
claim that this is just the similarity that we appreciate in the birthday party
example (and countless other examples of analogical reasoning, in particular
those we are aware of in Navya-Nyaya Logic) and which in turn is the basis for
the support it provides. The following result, see [12], [26] shows how widely
CP is satisfied:

Theorem 6. Let the probability function w on Lq satisfy ULi. Then w satisfies
the Counterpart Principle, CP.

Proof. Clearly we may assume that w(ψ) > 0, otherwise the required conclu-
sion is trivial. Since w satisfies ULi let the corresponding family of probability
functions consist of wr on Lr for r ∈ N+. Then

w∞ =

∞⋃
r=1

wr

is a probability function on the infinite (unary) language L∞ = {R1, R2, R3, . . .}
extending w and satisfying Ex and Px. Let θ, θ′, ψ be as in the statement of CP.
Since we are assuming Ex and Px we may assume that all the constant and pred-
icate symbols appearing in θ which are common θ′ are amongst a1, a2, . . . , ak,
R1, R2, . . . , Rg, and that the replacements are an+i 7→ an+i+k for i = 1, . . . , k
and Rg+j 7→ Rg+j+t for j = 1, . . . , t. So suppressing these common constant
and predicate symbols we can write

θ = θ(an+1, an+2, . . . , an+k, Rg+1, Rg+2, . . . , Rg+t),

θ′ = θ(an+k+1, an+k+2, . . . , an+2k, Rg+t+1, Rg+t+2, . . . , Rg+2t).

With this in place let

θi+1 = θ(an+ik+1, an+ik+2, . . . , an+(i+1)k, Rg+it+1, Rg+it+2, . . . , Rg+(i+1)t) ∈ SL∞

so θ1 = θ, θ2 = θ′. Now define τ : QFSL1 → SL∞ by

τ(R1(ai)) = θi, τ(¬φ) = ¬τ(φ), τ(φ ∧ η) = τ(φ) ∧ τ(η), etc.

for φ, η ∈ QFSL1.

Let v : QFSL1 → [0, 1] be defined by

v(φ) = w∞(τ(φ) |ψ).

Then since w∞ satisfies (P1-2) (on SL∞) so does v (on QFSL1). Also since w∞
satisfies Ex + Px, for φ ∈ QFSL1, permuting the θi in w(τ(φ) |ψ) will leave
this value unchanged so permuting the ai in φ will leave v(φ) unchanged. i.e. v
satisfies Ex.
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By Gaifman’s Theorem v has an extension to a probability function on L1 and it
is easy to check that it still satisfies Ex. Hence it also satisfies PIR by Theorem
4. In particular then

v(R1(a1) |R1(a2)) ≥ v(R1(a1)).

But since τ(R1(a1)) = θ, τ(R1(a2)) = θ′ this amounts to

w∞(θ | θ′ ∧ ψ) ≥ w∞(θ |ψ)

and hence gives the Counterpart Principle for w since w∞ agrees with w on
SLq.

This theorem then provides a rational justification for analogical support by
structural similarity. Given this one might then expect that the more constants
and predicates θ and θ′ have in common the greater this support. That indeed
turns out to be the case, the following result is sketched in [26, p173]:

Theorem 7. Let the probability function w on Lq satisfy ULi and let

θ = θ( ~a1, ~a2, ~a3, ~R1, ~R2, ~R3)

θ′ = θ( ~a1, ~a2, ~a4, ~R1, ~R2, ~R4)

θ′′ = θ( ~a1, ~a5, ~a6, ~R1, ~R5, ~R6)

and ψ = ψ( ~a1, ~R1) where the ~ai, ~Rj are all disjoint. Then

w(θ | θ′ ∧ ψ) ≥ w(θ | θ′′ ∧ ψ).

Interestingly the proof of this perhaps rather unsurprising theorem seems to
require results from Polyadic Inductive Logic, that is where we allow not just
unary predicate symbols in our language but also relation symbols of all arities.
What is more Theorems 6 and 7 continue to hold in polyadic inductive logic
provided we enhance ULi to the obvious polyadic version Li.

It seems interesting to note that, as exemplified by the two versions of ‘analogy’
treated here, that to date the analogy principles which have been investigated
are either consequences of existing well accepted symmetry principles (as was the
case with the counterpart Principle and Ex) or else only hold for some very few
probability functions which hardly justify being termed rational, see for example
[11], [13]. At this stage then it seems, in view of our earlier remarks, that the
notions of relevance and analogy (if indeed these are not already essentially the
same thing) are simply derivatives of symmetry and irrelevance and that these
two are the basic ‘building blocks’ of rationality in this context.

Theorems 6 and 7 seem to be the tip of an iceberg, which we (Alena Vencovská)
currently plan to investigate. For example, assuming ULi throughout, in which
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cases do we have strict inequality in the Counterpart Principle? This clearly
cannot hold if θ is a contradiction or a tautology and there are other exam-
ples too of ‘constant’ sentences θ which always give equality in the Counterpart
Principle for any probability function satisfying Ex + Px. We have a complete
characterization of such ‘constant sentences’ but what we do not yet have is
a complete characterization of the probability functions which give a strict in-
equality in the Counterpart Principle for all but these constant sentences. [For
more details see [12].]

A second issue is the combined effect of multiple analogies, or for example
replacing θ′ by some φ′ where φ |= θ. Indeed it seems possible that there is a
‘logic of analogous reasoning’ to be unearthed here.
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[26] Paris, J.B. & Vencovská, A., Pure Inductive Logic. To appear in the As-
sociation of Symbolic Logic series Perspectives in Logic, Ed. M.Rathjen,
Cambridge University Press, 2014.

14



[27] Romeijn, J-W., Analogical Predictions for Explicit Simmilarity, Erkennt-
nis, 2006, 64(2):253-280.

[28] Skyrms, B., Analogy by Similarity in Hyper-Carnapian Inductive Logic,
in Philosophical Problems of the Internal and External Worlds, J.Earman.
A.I.Janis, G.Massey & N.Rescher, eds., University of Pittsburgh Press,
1993, pp273-282.

[29] Waterhouse, P.J., Probabilistic Relationships, Relevance and Irrelevance
within the Field of Uncertain Reasoning, Doctorial Thesis, The University
of Manchester, Manchester, UK, 2007. Available at
http://www.maths.manchester.ac.uk/ jeff/theses/pwthesis.pdf

15


