
Pure Inductive Logic

Nesin Maths Village
Summer School Course Notes

Basics

We work in first order predicate logic with quantifiers ∀, ∃, connectives ∧,∨,→
¬, variables (x, y, . . . , x1, x2, . . .), parentheses (, ).

Language L:

- finitely many relation (predicate) symbols R1, . . . , Rq of arities r1, . . . , rq,
- countably many constant symbols a1, a2, a3, . . .,
- no equality nor function symbols.

Written as L = {R1, . . . , Rq}.

For formulae and sentences of L we use lower case Greek letters, and when
useful, we list the constants and free variables appearing in them in brack-
ets. For example, for L containing 3 unary relation symbols (predicates)
R1, R2, R3,

φ(a2, a7) = (R1(a2) ∧R2(a2)) → R3(a7), θ(a1) = R2(a1) ∨ ∃yR2(y)

ψ(x, a1) = R2(a1) ∨R3(x).

are sentences/formula of L.

SL . . . the set of all sentences of the language L
QFSL . . . the set of all quantifier free sentences of the language L.

To reduce subscripts:

Other letters can stand for the ai.
For example b1, b2, . . . , bm (sometimes written as b⃗) for ai1 , ai2 , . . . , aim .
R,Q, P (also) stand for relation symbols.

T L . . . the set of structures for L, each with universe {a1, . . . , an, . . .} and
with every ai interptreted as itself.
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Note: θ ∈ SL is consistent just if there is M ∈ TL such that M |= θ (because
θ is consistent just when it has a countable model, and such a model can be
modified so that all individuals in it are (interpretations of) some of the ai).

Definition A function w : SL → [0, 1] is a probability function on SL if for
all θ,φ and ∃xψ(x) ∈ SL

(P1) If θ is logically valid [! θ ] then w(θ) = 1.

(P2) If θ and φ are mutually exclusive [! ¬(θ ∧ φ) ] then

w(θ ∨ φ) = w(θ) + w(φ) .

(P3) w(∃xψ(x)) = limn→∞ w(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)).
Notes: (P3) is called the Gaifman’s condition and it is intended to capture the
idea that all individuals in the universe are named as a1, a2, . . .. A function
w : QFSL → [0, 1] satisfying (P1) and (P2) is referred to as a probability
function on quantifier-free formulae. Later we will see that any such function
has a unique extension to a probability function on SL (Gaifman’s Theorem).

Example (i) Let M ∈ T L. Define VM : SL → {0, 1} by

VM(θ) =

{
1 if M ! θ,
0 otherwise.

(1)

Then VM is a probability function on SL.

(ii) Define c∞ : SL → [0, 1] by setting

c∞(Ri(b1, . . . , bri)) =
1

2

for any Ri and any b1, . . . , bri , and by requiring all the distinct instantations
of the predicates or their negations to be stochastically independent. That
is,

c∞

(
k∧

j=1

±Rij(b
j
1, . . . , b

j
rij
)

)
=

1

2k

(where ±R stands for R or ¬R).
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As we shall see using the DNF theorem and then the promised Gaifman’s
theorem, c∞ extends uniquely to a probability function on SL, ”the fairest
one”.

Properties of probability functions

Let w be a probability function on SL. Then for θ,φ ∈ SL,

(Pa) w(¬θ) = 1− w(θ).

Proof. We have that ! θ ∨ ¬θ and ! ¬(θ ∧ ¬θ) so by (P1) and (P2),

1 = w(θ ∨ ¬θ) = w(θ) + w(¬θ).

(Pb) ! ¬θ ⇒ w(θ) = 0.

Proof. From ! ¬θ we have w(¬θ) = 1 by (P1) so from (Pa), w(θ) = 0.

(Pc) θ ! φ ⇒ w(θ) ≤ w(φ).

Proof. If θ ! φ then ! ¬(¬φ∧θ) so from (P2), (Pa) and the fact that w takes
values in [0, 1],

1 ≥ w(¬φ ∨ θ) = w(¬φ) + w(θ) = 1− w(φ) + w(θ)

from which the required inequality follows.

(Pd) θ ≡ φ ⇒ w(θ) = w(φ).

Proof. If θ ≡ φ then θ ! φ and φ ! θ. By (Pc), w(θ) ≤ w(φ) and w(φ) ≤ w(θ)
so w(θ) = w(φ).

(Pe) w(θ ∨ φ) = w(θ) + w(φ)− w(θ ∧ φ).
Proof. Since θ ∨ φ ≡ θ ∨ (¬θ ∧ φ) and ! ¬(θ ∧ (¬θ ∧ φ)), (Pd) and (P2) give

w(θ ∨ φ) = w(θ ∨ (¬θ ∧ φ)) = w(θ) + w(¬θ ∧ φ). (2)

Also φ ≡ (θ ∧ φ)∨ (¬θ ∧ φ) and ! ¬((¬θ ∧ φ)∧ (θ ∧ φ)) so by (Pd) and (P2)
again,

w(φ) = w((θ ∧ φ) ∨ (¬θ ∧ φ)) = w(θ ∧ φ) + w(¬θ ∧ φ). (3)

Eliminating w(¬θ ∧ φ) from (2), (3) now gives

w(θ ∨ φ) = w(θ) + w(φ)− w(θ ∧ φ).

Note that all the above properties follow by (P1) and (P2); the condition
(P3) was not used.
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Conditional probability

Definition Given a probability function w on SL and φ ∈ SL with w(φ) > 0
we define the conditional probability function w(. |φ) : SL → [0, 1] by

w(θ |φ) = w(θ ∧ φ)
w(φ)

. (4)

Proposition 1 Let w be a probability function on SL, φ ∈ SL and w(φ) > 0.
Then w(. |φ) is a probability function and w(θ |φ) = 1 whenever φ ! θ.

Proof. To show (P1) suppose that ! θ. Then φ ≡ θ ∧ φ so w(θ ∧ φ) = w(φ)
by property (Pd) and in turn w(θ |φ) = 1.

For (P2) suppose that ! ¬(η ∧ θ). Then |= ¬((η ∧ φ) ∧ (θ ∧ φ)) so since

(θ ∨ η) ∧ φ ≡ (θ ∧ φ) ∨ (η ∧ φ),

w((θ ∨ η) ∧ φ) = w((θ ∧ φ) ∨ (η ∧ φ)), by property (Pd),

= w(θ ∧ φ) + w(η ∧ φ), by (P2) for w,

and dividing by w(φ) gives the result.

For (P3), note that

∃xψ(x) ∧ φ ≡ ∃x (ψ(x) ∧ φ),
(

n∨

i=1

ψ(ai)

)
∧ φ ≡

n∨

i=1

(ψ(ai) ∧ φ),

so using property (Pd) and (P3) for w,

w(∃xψ(x) ∧ φ) = w(∃x (ψ(x) ∧ φ))

= lim
n→∞

w

(
n∨

i=1

(ψ(ai) ∧ φ)
)

= lim
n→∞

w

((
n∨

i=1

ψ(ai)

)
∧ φ
)

and the result follows after dividing both sides by w(φ).
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Finally, if φ |= θ then φ ≡ θ ∧ φ so w(θ ∧ φ) = w(φ) by property (Pd) and in
turn w(θ |φ) = 1. ✷

Example (continued). VM corresponds to an agent who is already sure
about everything, who can only learn what he believes with probability 1
anyway, and whose probability function does not change upon learning it.
That is, VM(.|φ) is defined only when M ! φ and in that case VM(θ|φ) =
VM(θ) for all θ ∈ SL. c∞ on the other hand is extremely open-minded: for
example, an agent using a language with just one unary predicate R and
employing c∞ would continue giving R(an) belief 1

2 after being told that
R(a1) . . . , R(an−1), regardless of n.

We are now in a position to formulate the main problem of the subject.

Question: In the situation of zero knowledge, logically, or rationally, what
probability function w : SL → [0, 1] should a rational agent adopt when w(θ)
is to represent the agent’s probability that a sentence θ ∈ SL is true in his
ambient structure M?

This can be seen as the central question, since after learning some facts
expressed e.g. by sentences φ1,φ2, . . . ,φn, provided that w (

∧n
i=1 φi) ̸= 0, the

agent could/should adopt the conditional probability

w

(
.

∣∣∣∣∣

n∧

i=1

φi

)
: SL → [0, 1]

as his probability function for the new context when φ1,φ2, . . . ,φn are known
to be true.

The question has puzzled generations of logicians. The two examples of
probability functions which we have considered so far, VM and c∞ clearly are
not particularly suitable.

There are many other probability functions, and to judge them, various prin-
ciples have been proposed as desirable (rational) for a probability function
to be adopted on the basis of zero knowledge. Next we will introduce some
of these principles.
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Some Basic Principles

The most basic principles are based on symmetry, and justified by arguing
that if there is a symmetry in the situation then it would be irrational of the
agent to break that symmetry when assigning probabilities.

One obvious such symmetry relates to the constants a1, a2, a3, . . . . In the
situation of zero knowledge, the agent has no reason to treat these any dif-
ferently - the subscripts on the a’s are simply to allow us to list them easily,
the agent is not supposed to ‘know’ that a1 comes before a2 which comes
before . . . in our list. This consideration leads to:

The Constant Exchangeability Principle, Ex

For θ(a1, a2, . . . , am) ∈ SL and any other m-tuple of distinct constants b1, b2, . . . , bm,

w(θ(a1, a2, . . . , am)) = w(θ(b1, b2, . . . , bm)). (5)

We will be assuming Ex of almost all probability function which we will be
considering.

Similarly, since in the situation of zero knowledge there is no reason to dis-
tinguish between predicates of the same arity:

The Principle of Predicate Exchangeability, Px

If R,R′ are relation symbols of L with the same arity then for θ ∈ SL,

w(θ) = w(θ′)

where θ′ is the result of simultaneously replacing R by R′ and R′ by R through-
out θ.

The following, somewhat more contentious principle, is based on the claim
that in the situation of zero knowledge there is a symmetry between any
relation symbol R of L and its negation ¬R and so our agent has no reason
to treat R any differently than ¬R. Since ¬¬R is logically equivalent to R
this leads to:

The Strong Negation Principle, SN

For θ ∈ SL,
w(θ) = w(θ′)
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where θ′ is the result of replacing each occurrence of R in θ by ¬R.

Example (continued). c∞ satisfies Ex,Px and SN. There are some special
M such that VM satisfies Ex and/or Px, but no VM can satisfy SN.

We will consider these principles and some equivalent formulations of them
again in Chapter 3. Before that, however, we will discuss some justification
of assuming that belief functions are probability functions.
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Problems 1

1. (a) Show that if w1 and w2 are probability functions on SL then 1
2(w1+w2)

is also a probability function on SL.

(b)∗ Let ⟨D,B, µ⟩ be a measure space, µ(D) = 1, and let d /→ wd be an
assignment of probability functions on SL to the elements of D such that for
each θ ∈ SL, the function d /→ wd(θ) is (Lebesgue) measurable. Show that
w defined by

w(θ) =

∫

D

wd(θ)dµ

is also a probability function on SL.

2. Show that for θ,φ ∈ SL, the following are equivalent:

(i) w(θ) ≤ w(φ) for all probability functions w on SL.
(ii) θ |= φ.

3. Let w : SL → [0, 1] satisfy (P1), (P2). Then condition (P3) is equivalent
to:

(P3′) w(∃xψ(x)) =
∞∑

n=1

w

(
ψ(an) ∧ ¬

n−1∨

i=1

ψ(ai)

)

for ∃xψ(x) ∈ SL.

4. Show that there are only finitely many structures M ∈ T L such that VM

satisfies Ex, and that no VM satisfies SN.
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Solutions to Problems 1

1. (a) This follows directly by checking P1− P3.

(b)(P (1) and (P2) are straightforward. To check (P3), recall Lebesgue Dom-
inated convergence theorem:

Let fn, n ≥ 1, be a sequence of measurable functions such that fn converges to
f almost everywhere. Suppose there exists an integrable function g ≥ 0 such
that, for all n ≥ 0, |fn| ≤ g almost everywhere. Then fn, f are integrable
and

lim
n→∞

∫

D

fndµ =

∫

D

fdµ.

Let ∃xψ(x) ∈ SL and for d ∈ D and n ∈ N define

fn(d) = wd(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)),

f(d) = wd(∃xψ(x)),

g(d) = 1.

By (P3) which holds for each wd, limn→∞ fn(d) = f(d) for each d. The fn,
f are measurable by the assumption made in the question and 0 ≤ fn ≤ 1
since tha values of wd are all in [0, 1]. Hence

lim
n→∞

∫

D

wd(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)) = lim
n→∞

∫

D

fn(d)dµ =

=

∫

D

f(d)dµ =

∫

D

wd(∃xψ(x))dµ = w(∃xψ(x))

so (P3) for w follows.

2. In view of property (Pc), we only need to show that if θ ! φ then there
is a probability function w such that w(φ) < w(θ). But in this case {θ,¬φ}
is consistent, so has a a model M ∈ T L. Then VM(θ) = VM(¬φ) = 1 but
VM(φ) = 1− VM(¬φ) = 0, as required.

3. Recall that the properties (Pa)-(Pe) follow just from (P1) and (P2), so we
can use them of w. Since

ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an) ≡
n∨

j=1

(
ψ(aj) ∧ ¬

j−1∨

i=1

ψ(ai)

)
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we have

w(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)) = w

(
n∨

j=1

(
ψ(aj) ∧ ¬

j−1∨

i=1

ψ(ai)

))

=
n∑

j=1

w

(
ψ(aj) ∧ ¬

j−1∨

i=1

ψ(ai)

)

by repeated use of (P2) since the disjuncts here are all disjoint. The result
follows.

4. Let r be the highest arity of a relation symbol in L. Any structure
M ∈ T L such that VM satisfies Ex is completely specified by the values
VM(Ri(b1, . . . , bri)) for i ∈ {1, . . . , 2q} and b1, . . . , bri (not necessarily distinct)
from a1, . . . , ar. There are only finitely many combinations of such values, so
the result follows.

No VM can satisfy SN because that would require, for example,

VM(R1(a1, . . . , ar1)) = VM(¬R1(a1, . . . , ar1))

but by property (Pa), we have

VM(R1(a1, . . . , ar1)) = 1− VM(¬R1(a1, . . . , ar1))
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Justifications of probability

Why use probability? Some other approaches would be much simpler to work
with: for example truth-functional belief like fuzzy logic, where belief values
of any sentence can be worked out from belief values of atomic sentences
(instantiations of predicates or their negations).

The most frequently quoted justification for bellief as probability is the Dutch
Book argument (Ramsey, de Finetti). It is based on identiying ‘belief’ with
willingness to bet.

Imagine an agent situated in a structure M (which is unknown to him) and
required to choose, for any θ ∈ SL and 0 ≤ p ≤ 1, one of two wagers - on or
against θ (where s > 0 is a stake):

(Bet1p) Get s(1− p) if θ is true in M , pay sp if θ is false in it

(Bet2p) Pay s(1− p) if θ is true in M , get sp if θ is false in it.

Note that:

• The two bets are complementary so that when the agent chooses one of
them, his opponent (bookie) is allocated the other one. Hence, with each
p, we assume that the agent is able to choose (at least) one of them. For if
the agent is not happy to accept Bet1p then presumably he thinks that the
bookie would be getting a better deal, and Bet2p allows him to swap roles.

• Clearly, Bet10 Bet21 are acceptable to the agent - greatest possible gain,
no risk of loss.

• If Bet1p is acceptable to the agent and 0 ≤ q < p then Bet1q is acceptable
to him (with Bet1q: larger gain if θ is true in M and smaller loss if θ is false).

• Similarly if Bet2p is acceptable to the agent and p < q ≤ 1 then Bet2q is
acceptable.

Consequently, there is some P ∈ [0, 1] such that for all p < P , Bet1p is
acceptable to the agent and for all p > P , Bet2p is acceptable. Define Bel(θ)
to be that P :

Bel(θ) = the supremum of those p ∈ [0, 1]
for which Bet1p is acceptable to the agent.

Bel(θ) is a measure of the agent’s willingness to bet on θ and in a sense it
quantifies the agent’s belief that θ is true.
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Clearly, this function Bel should be such that the agent cannot be Dutch-
booked. That is, such that there is no set of (simultaneous) bets each of which
is acceptable to the agent but whose combined effect is to cause the agent
certain loss no matter what his ambient structure M ∈ T turns out to be.

Example Assume that L contains two unary predicates P and Q, and let
θ = P (a1)∧Q(a1), φ = ¬P (a1)∨¬Q(a1). Assume that Bel(θ) = 0.75 and
Bel(φ) = 0.45. Then for θ the agent would accept Bet10.7 and for φ he would
accept Bet10.4. Take the stake s > 0 to be the same for both bets. Depending
on the ambient structure, the outcome for the agent is shown below:

P (a1) Q(a1)

θ︷ ︸︸ ︷
P (a1) ∧Q(a1),

φ︷ ︸︸ ︷
¬P (a1) ∨ ¬Q(a1)

Bet on θ︷ ︸︸ ︷
Payoff

Bet onφ︷ ︸︸ ︷
Payoff

T T T F 0.3s −0.4s
T F F T −0.7s 0.6s
F T F T −0.7s 0.6s
F F F T −0.7s 0.6s

Overall, the agent certainly loses so the two bets acceptable to the agent are
an example of a Dutch Book.

To analyse the situation, notice that if the agent accepts Bet1p for θ (that is,
he bets on θ) he will in the event of the ambient structure being M ”gain”

s(1− p)VM(θ)− sp(1− VM(θ)) = s(VM(θ)− p)

(referring to loss as negative gain). Clearly in Bet2p the gain is minus this,
i.e. −s(VM(θ)− p).

In the above example, the combined effect of the two bets in the case that
the ambient structure turns out to be M is for the agent to gain

s(VM(θ)− 0.7) + s(VM(φ)− 0.4) = s(VM(θ) + VM(φ)− 1.1).

Since we have |= ¬(θ ∧ φ) it follows that VM(θ) + VM(φ) = VM(θ ∨ φ) ≤ 1
which makes it plain that the agent loses no matter what.

Theorem 2 Suppose that for Bel : SL → [0, 1] there are no sets1 A,B,
sentences θi ∈ SL, pi ∈ [0, Bel(θi)), stakes si for i ∈ A, and sentences φj,

1Here we mean finite or countably infinite sets. If A and/or B are infinite, a convergence
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stakes tj > 0, qj ∈ (Bel(φj), 1] for j ∈ B, such that

∑

i∈A

si(VM(θi)− pi) +
∑

j∈B

(−tj)(VM(φj)− qj) < 0 (7)

for all M ∈ T . Then Bel satisfies (P1-3).

Note that the conditions of the theorem express that there is no Dutch book
against Bel (the convergence condition from the footnote giving a limit on
the loss that the agent or the bookmaker can be exposed to in the worst
possible case).

Proof of Theorem 2: For (P1) suppose that θ ∈ SL and ! θ but Bel(θ) <
1. Then for Bel(θ) < q < 1 the agent accepts Bet2q. But since VM(θ) = 1
for all M ∈ T we have that with stake 1,

(−1)(VM(θ)− q) = q − 1 < 0

which gives an instance of (7), contradiction.

Suppose that (P2) fails, say θ,φ ∈ SL are such that ! ¬(θ ∧ φ) but

Bel(θ) + Bel(φ) < Bel(θ ∨ φ).

At most one of θ,φ can be true in any M ∈ T so

VM(θ ∨ φ) = VM(θ) + VM(φ).

Pick p > Bel(θ), q > Bel(φ), r < Bel(θ ∨ φ) such that p+ q < r. Then with
stakes 1,1,1,

(−1)(VM(θ)− p) + (−1)(VM(φ)− q) + (VM(θ ∨ φ)− r) = (p+ q)− r < 0

giving an instance of (7) and contradicting our assumption. A similar argu-
ment when

Bel(θ) + Bel(φ) > Bel(θ ∨ φ)

condition is assumed to be satisfied, namely that there is K > 0 such that

∣∣∣∣∣
∑

i∈A

si(VM (θi)− pi)

∣∣∣∣∣ ,

∣∣∣∣∣∣

∑

j∈B

tj(VM (φj)− qj)

∣∣∣∣∣∣
< K (6)

for each M .
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shows that this cannot hold either so we must have equality here.

Finally suppose that ∃xψ(x) ∈ SL. By Problem I.3 and the fact that we
have already proved that (P1), (P2) hold for Bel, it is enough to derive a
contradiction from the assumption that

∞∑

n=1

Bel

(
ψ(an) ∧ ¬

n−1∨

i=1

ψ(ai)

)
̸= Bel(∃xψ(x)).

Notice that since the sentences on the left hand side here are disjoint both
sides are bounded by 1.

We cannot have > here since then that would hold for the sum of a finite
number of terms on the left hand side, contradicting (Pc). So we may suppose
that we have < here. In this case we can pick

pn > Bel

(
ψ(an) ∧ ¬

n−1∨

i=1

ψ(ai)

)
for n = 1, 2, . . .

and r < Bel(∃xψ(x)) with
∑∞

n=1 pn < r. Since for M ∈ T ,

VM(∃xψ(x)) =
∞∑

n=1

VM

(
ψ(an) ∧ ¬

n−1∨

i=1

ψ(ai)

)

we get, as with the argument above for (P2), that for all stakes 1,

(VM(∃xψ(x))− r) +
∞∑

n=1

(−1)

(
VM

(
ψ(an) ∧ ¬

n−1∨

i=1

ψ(ai)

)
− pn

)

= − r +
∞∑

n=1

pn < 0,

giving an instance of (7) in contradiction to our assumption.

The Dutch Book argument can also be extended to conditional bets to justify
the standard definition of the derived conditional probability given by (4).
The idea is that not only is the agent offered unconditional bets as above
but also bets about θ ∈ SL being true in his ambient structure M given that
φ ∈ SL has turned out to be true in it. Similarly to the above unconditional
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case then for θ,φ ∈ SL, 0 ≤ p ≤ 1 and for a stake s > 0 the agent is offered
a choice of one of two wagers:

(CBet1p): Get s(1− p) if θ is true in M , pay sp if θ is false in it;

(CBet2p): Pay s(1− p) if θ is true in M , get sp if θ is false in it;

with all bets null and void if M ! φ.
Defining Bel(θ |φ) to be the supremum of those p ∈ [0, 1] for which CBet1p
is acceptable to the agent, and modifying the notion a Dutch Book for the
conditional context, we can show (cf Problem II.2) that the requirement of
no Dutch book against the agent still forces Bel to satisfy (P1),(P2),(P3)
and moreover that for al θ,φ we have Bel(θ |φ) · Bel(φ) = Bel(θ ∧ φ).

Consequently, a belief function that avoids all Dutch Books must be a prob-
ability function with conditional probability satisfying (4). We remark that,
conversely, if Bel : SL → [0, 1] is a probability function then Bel cannot be
(conditionally) Dutch Booked. See for example [1] for a proof.
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Problems 2

1. Let L contains two unary predicates P and Q, and let

θ = ∀x(P (x) ∨Q(x)), φ = P (a1) ∨ P (a2), ψ = Q(a1) ∧Q(a2).

Assume that Bel : SL → [0, 1] satisfies

(a) Bel(θ) = 0.8, Bel(φ) = 0.3 and Bel(ψ) = 0.3,

or
(b) Bel(θ) = 0.6, Bel(φ) = 0.3 and Bel(ψ) = 0.3.

In each case decide weather or not Bel can be Dutch-booked and if so, find
a corresponding Dutch book.

2. (i) Write down what the gain/loss of the agent is after accepting CBet1p
or CBet2p respectively for a stake s > 0 when the ambient structure is M .

(ii) Let Bel : SL → [0, 1], Bel(. | .) : SL × SL → [0, 1]. Suggest what it
means to say that Bel could be Dutch Booked.

(iii) Show that if Bel as above cannot be Dutch Booked than Bel satisfies
(P1),(P2),(P3) and for all θ,φ ∈ SL, Bel(θ |φ) ·Bel(φ) = Bel(θ ∧ φ).
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Solutions to Problems 2

1. (a) If Bel : SL → [0, 1] satisfied (a) and (P1)-(P3)1 then, by (Pe), (Pa)
we would have

Bel(¬φ ∧ ¬ψ) = Bel(¬φ) + Bel(¬ψ)−Bel(¬φ ∨ ¬ψ) ≥ 0.7 + 0.7− 1 = 0.4

but since

¬φ ∧ ¬ψ |= (¬P (a1) ∧ ¬Q(a1)) ∨ (¬P (a2) ∧ ¬Q(a2)),

it follows that
¬φ ∧ ¬ψ |= ¬θ

and hence we would also have by (Pc) and (Pa)

Bel(¬φ ∧ ¬ψ) ≤ Bel(¬θ) = 1−Bel(θ) = 0.2.

This is a contradiction, so Bel cannot satisfy both the conditions (a) and
(P1)-(P3) and hence by Theorem 2 it can be Dutch booked.

An example of a Dutch book are the following bets with the same stake
s > 0: Bet10.75 on θ and Bet20.35 against both ψ and φ/ Then the total gain
is

s(VM(θ)− 0.75)− s(VM(φ)− 0.35)− s(VM(ψ)− 0.35) =

− 0.05s+ (VM(θ)− VM(φ)− VM(ψ))s

and since θ |= φ ∨ ψ, for any M it must hold that VM(θ) ≤ VM(φ) + VM(ψ)
so the result is always negative as required.

To show that no Dutch book can be found for (b), by the remark conclud-
ing Section II it suffices to find a probability function which agrees with
Bel on θ,φ,ψ. Using the obvious notation, let M1,M2,M3 be the following
structures:

M1 :
a1 a2 a3 a4 a5 a6 . . .

P 0 0 0 0 0 0 . . .
Q 1 0 1 0 1 0 . . .

M2 :
a1 a2 a3 a4 a5 a6 . . .

P 1 1 1 1 1 1 . . .
Q 1 0 1 0 1 0 . . .

1And hence properties (Pa)-(Pe).
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M3 :
a1 a2 a3 a4 a5 a6 . . .

P 0 0 0 0 0 0 . . .
Q 1 1 1 1 1 1 . . .

Then

M1 |= ¬θ ∧ ¬φ ∧ ¬ψ, M2 |= θ ∧ φ ∧ ¬ψ, M3 |= θ ∧ ¬φ ∧ ψ,

so

w = 0.4VM1 + 0.3VM2 + 0.3VM3

has the required properties.

2. (i) Accepting CBet1p means gaining

sVM(φ)(VM(θ)− p)

whilst accepting CBet2p means gaining minus this.

(ii) There are sets (finite or countably infinite) A,B,C,D, sentences θi, stakes
si > 0, pi ∈ [0, Bel(θi)) for i ∈ A, sentences φi, stakes ti > 0, qi ∈ (Bel(φi), 1]
for i ∈ B, sentences ηi,ψi, stakes ui > 0, ri ∈ [0, Bel(ηi |ψi)) for i ∈ C,
sentences ζi, ξi, stakes vi > 0, mi ∈ (Bel(ζi | ξi), 1] for i ∈ D such that for all
M ∈ T we have

∑
i∈A si(VM(θi)− pi) +

∑
i∈B(−ti)(VM(φi)− qi) +

∑

i∈C

uiVM(ψi)(VM(ηi)− ri) +
∑

i∈D

(−vi)VM(ξi)(VM(ζi)−mi) < 0 (8)

(and in case of A,B,C,D infinite there is K > 0 such that for all M ∈ T
the series above converge with sums less than K).

(iii) By Theorem 2 we can already assume that Bel is a probability function.
Suppose first that

Bel(θ |φ) ·Bel(φ) < Bel(θ ∧ φ). (9)

If Bel(θ |φ) < Bel(θ ∧ φ) then picking Bel(θ |φ) < r < p < Bel(θ ∧ φ) gives

−VM(φ)(VM(θ)− r) + (VM(θ ∧ φ)− p) = rVM(φ)− p ≤ r − p < 0

18



for any M , since VM(φ)VM(θ) = VM(θ∧φ), contradicting the given no Dutch
Book condition. Hence with (9), Bel(φ) < 1. We also have Bel(θ |φ) < 1
since otherwise Bel(φ) < Bel(θ ∧ φ), contradicting Bel being a probability
function (property (Pc)). Hence we can pick Bel(θ |φ) < r, Bel(φ) < q,
p < Bel(θ ∧ φ) with qr < p. But then considering the corresponding wagers
with stakes 1, r, 1 gives

−VM(φ)(VM(θ)− r)− r(VM(φ)− q) + (VM(θ ∧ φ)− p)

and furnishes a Dutch Book since it is straightforward to check that its value
is rq − p < 0 regardless of M .

We have shown that (9) cannot hold. So if the required equality fails it must
be because

Bel(θ |φ) ·Bel(φ) > Bel(θ ∧ φ). (10)

But in this case pick Bel(θ |φ) > r, Bel(φ) > q, p > Bel(θ ∧ φ) with qr > p
and obtain a Dutch Book via

VM(φ)(VM(θ)− r) + r(VM(φ)− q)− (VM(θ ∧ φ)− p).
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Specifying Probability Functions

Specifying Probability Functions on QFSL

Let L = {R1, R2, . . . , Rq} where Ri has arity ri. For distinct constants
b1, b2, . . . , bm, a state description for b1, b2, . . . , bm is a sentence of L of the
form

Φ(b1, b2, . . . , bm) =
q∧

i=1

∧

c1,c2,...,cri

±Ri(c1, c2, . . . , cri)

where the c1, c2, . . . , cri range over all (not necessarily distinct) choices from
b1, b2, . . . , bm and ±Ri stands for either Ri or ¬Ri. Note that:

• We shall identify two state descriptions if they are the same up to the
ordering of their conjuncts.

• A state description tells us which of the Ri(c1, c2, . . . , cri) hold and which
do not hold for Ri a relation symbol from our language and any arguments
from b1, b2, . . . , bm.

• Any two distinct (inequivalent) state descriptions for b1, b2, . . . , , bm are
exclusive in the sense that their conjunction is inconsistent.

• The state descriptions for b1, b2, . . . , , bm are exhaustive in the sense that
the disjunction of all of them is a tautology.

• For m = 0 the sole state description is taken to be a tautology (denoted
⊤).

• Upper case Θ,Φ,Ψ always denote state descriptions. .

Example If L = {R,P}, where P is unary binary and R is binary then

P (a1) ∧ ¬P (a2) ∧R(a1, a1) ∧ ¬R(a1, a2) ∧ ¬R(a2, a1) ∧R(a2, a2)

is a state description for a1, a2.

By the Disjunctive Normal Form Theorem any θ(b1, b2, . . . , bm) ∈ QFSL is
logically equivalent to a disjunction of state descriptions for b1, b2, . . . , bm

θ(⃗b) ≡
∨

Θ∈S

Θ(⃗b)
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where S is some subset of the set of all state descriptions for m constants.
Hence for any w satisfying (P2),

w(θ(⃗b)) =
∑

Θ∈S

w(Θ(⃗b)). (11)

The values of any probability function on quantifier free sentences are thus
determined by its values on state descriptions. Also (adding constants on
the right hand side if necessary), just by its values on state descriptions for
a1, a2, . . . , an (n ∈ N).
Note that if w satisfies Ex, Px or SN respectively on state descriptions then
it satisfies them on all θ ∈ QFSL.

***

Assume a function w is defined on the state descriptions Θ(a1, a2, . . . , am),
m ∈ N only, and it satisfies:

(i) w(Θ(a1, a2, . . . , am)) ≥ 0,

(ii) w(⊤) = 1,

(iii) w(Θ(a1, a2, . . . , am)) =
∑

Φ(a1,...,am+1)|=Θ(a1,...,am)

w(Φ(a1, a2, . . . , am+1)). (12)

Then w extends to a function on QFSL satisfying (P1) and (P2) by setting
(unambiguously by (iii))

w(θ(b1, b2, . . . , bm)) =
∑

Θ(a1,...,ak)|=θ(b1,...,bm)

w(Θ(a1, a2, . . . , ak)) (13)

where k is sufficiently large that all of the bi are amongst a1, a2, . . . , ak.

Furthermore, in view of the following lemma, there is an easy-to-check con-
dition for this extension to satisfy Ex.

Lemma 1 Let w satisfy (P1) and (P2) and assume that for any state de-
scription Φ(a1, . . . , an) and τ a permutation of {1, 2, . . . , n},

w(Φ(a1, . . . , an)) = w(Φ(aτ(1), . . . , aτ(n))) . (14)

Then w satisfies Ex on quantifier-free formulas.
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Proof If Θ(a1, . . . , am) is a state description and b1, b2, . . . , bm is any other
m tuple of distinct constants, bj = aij , then then there is a permutation τ of
{1, 2, . . . , n}, where

n = max{i1, . . . , im)},
such that τ(j) = ij for j = 1, 2, . . . ,m. So

w(Θ(a1, . . . , am)) =
∑

Φ(a1,...,an)|=Θ(a1,...,am)

w(Φ(a1, . . . , an))

=
∑

Φ(a1,...,an)|=Θ(a1,...,am)

w(Φ(aτ(1), . . . , aτ(n))), by (14),

=
∑

Φ(aτ(1),...,aτ(n))|=Θ(aτ(1),...,aτ(m))

w(Φ(aτ(1), . . . , aτ(n)))

=
∑

Ψ(a1,...,an)|=Θ(aτ(1),...,aτ(m))

w(Ψ(a1, . . . , an))

= w(Θ(aτ(1), . . . , aτ(m)))

= w(Θ(ai1 , . . . , aim))

= w(Θ(b1, . . . , bm)) .

It follows that w satisfies (5) on state descriptions and hence by virtue of
(11) on QFSL. "

Extending Probability Functions from QFSL to all sentences

Theorem 3 Suppose that w− : QFSL → [0, 1] satisfies (P1) and (P2) for
θ,φ ∈ QFSL. Then w− has a unique extension to a probability function
w on SL satisfying (P1-3) for any θ,φ, ∃xψ(x) ∈ SL. Furthermore if w−

satisfies Ex, Px, SN (respectively) on QFSL then so will its extension w to
SL.

Proof Let w− be as in the statement of the theorem. For θ ∈ QFSL the
subsets

[θ] = {M ∈ T |M ! θ }
of T form an algebra, A say, of sets and µw− defined by

µw−([θ]) = w−(θ) for θ ∈ QFSL

is easily seen to be a finitely additive measure on this algebra.
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Indeed µw− is (trivially) a pre-measure. For suppose θ,φi ∈ QFSL for i ∈ N
with the [φi] disjoint and ⋃

i∈N

[φi] = [θ]. (15)

Then it must be the case that for some finite n
⋃

i≤n

[φi] = [θ],

otherwise
{¬φi | i ∈ N } ∪ {θ}

would be finitely satisfiable and hence, by the Compactness Theorem for the
Predicate Calculus, would be satisfiable in some structure for L. Although
this particular structure need not be in T its substructure with universe the
{a1, a2, a3, . . .} will be, and will satisfy the same quantifier free sentences,
thus contradicting (15). So from the disjointness of the [φi] we must have
that [φi] = ∅ for i > n (so µw−([φi]) = 0), giving

µw−([θ]) =
∑

i≤n

µw−([φi]) =
∑

i∈N

µw−([φi]),

and confirming the requirement to be a pre-measure.

Hence by Carathéodory’s Extension Theorem (see for example [2]) there is
a unique extension µw of µw− defined on the σ-algebra B generated by A.
Notice that for ∃xψ(x) ∈ SL (where there may be some constants appearing
in ψ(x))

[∃xψ(x)] = {M ∈ T |M ! ∃xψ(x) }
= {M ∈ T |M ! ψ(ai), some i ∈ N+ }
=

⋃

i∈N+

{M ∈ T |M ! ψ(ai) }

=
⋃

i∈N+

[ψ(ai)] (16)

so since B is closed under complements and countable unions B contains all
the sets [θ] for θ ∈ SL.

Now define a function w on SL by setting

w(θ) = µw([θ]).
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Notice that w extends w− as µw extends µw− . Since µw is a measure w
satisfies (P1-2) and also (P3) from (16) and the fact that µw is countably
additive.

This probability function must be the unique extension of w− to SL satisfying
(P1-3). For suppose that there was another such probability function, u say.
By property (Pd) it is enough to show that u and w agree on sentences θ
in Prenex Normal Form. This can be done by induction on the quantifier
complexity of θ, see [1] for some technical details.

The last part for Ex can also be shown by this method but alternatively we
can argue as follows: Assume that w satisfies Ex on QFSL. Let θ(a1, . . . , am) ∈
SL and let b1, . . . , bm be distinct constants: bj = akj . Let σ be a permutation
of N+ such that σ(j) = kj for j = 1, . . .m, so bj = aσ(j) (such a permutaton
clearly exists). The function v : SL → [0, 1] defined by

v(φ(ai1 , ai2 , . . . , ain)) = w(φ(aσ(i1), aσ(i2), . . . , aσ(in)))

is also a probability function which agrees with w on QFSL. Since the exten-
sion is unique, v = w on SL and hence in particular

w(θ(a1, . . . , an)) = v(θ(a1, . . . , an)) = w(θ(aσ(1), . . . , aσ(n))) = w(θ(b1, . . . , bn))

showing that w satisfies Ex on the whole of SL.

The cases of Px and SN are similar.
"
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Problems 3

1. Let L = {R}, where R is binary. A state description for m constants,
Θ(b1, b2, . . . , bm), can be represented by an m×m {0, 1} matrix DΘ = (di,j)
with

di,j =

{
1 if Θ |= R(bi, bj)
0 if Θ |= ¬R(bi, bj)

Express Ex and SN in terms of conditions on values w gives to state descrip-
tions as represented by these matrices.

,

2. (Trurh functional belief versus probability) We say that a function

Bel : SL → [0, 1]

is truth-functional if there are functions

F¬ : [0, 1] → [0, 1],
F∧ : [0, 1]× [0, 1] → [0, 1],
F∨ : [0, 1]× [0, 1] → [0, 1]

such that for φ,ψ ∈ SL,

Bel(¬φ) = F¬(Bel(φ),
Bel(φ ∧ ψ)) = F∧(Bel(φ), Bel(ψ)),
Bel(φ ∨ ψ)) = F∨(Bel(φ), Bel(ψ))

(a) Give an example of a probability function which is truth functional.

(b) Show that no probability function w which gives value 1
2 to some sentence

can be truth-functional.

(c) Let L be as in Problem 1 and let Bel be a truth-functional belief function
with F¬(x) = 1−x and F∧(x, y) = min{x, y} and such that Bel(R(ai, aj)) =
0.4 for each i, j ∈ {1, 2}. Write down

Bel(¬R(a1, a1) ∧ ¬R(a1, a2) ∧R(a2, a1) ∧R(a2, a2))

(note that it does not matter in which order the conjunctions are applied)
and suggest how to find two probability functions w1, w2 which agree with
Bel on R(ai, aj) (i, j ∈ {1, 2}) but disagree with Bel and each other on

¬R(a1, a1) ∧ ¬R(a1, a2) ∧R(a2, a1) ∧R(a2, a2).
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(w1, w2 are not required to satisfy Ex - the exercise is harder with Ex).

3. Let L1, L2 be the languages {P}, {R} where P is unary and R binary. Let
w2 be a probability function on SL2. Show that there is a unique probability
function w1 on SL1 such that

w1

( n∧

i=1

P ϵi(ai)
)
= w2

( n∧

i=1

Rϵi(a2i+1, a2i+2)
)
,

where ϵi ∈ {0, 1} and P 1, P 0 stand for P , ¬P respectively (and similarly for
Rϵ).
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Solutions to Problems 3

1. We shall write w(DΘ) for w(Θ) etc.

Ex: Ex is the condition that ifD is anm×m {0, 1}matrix, σ is a permutation
of {1, 2, . . . ,m} and σD obtains from D by simultaneously permuting rows
and columns according to σ (that is σD = ei,j where ei,j = dσ−1(i),σ−1(j)) then
w(D) = w(σD).

SN: if D is an m × m {0, 1} matrix and D obtains from D upon replacing
every 1 by 0 and every 0 by 1, then w(D) = w(D).

2. (a) If M is any structure from T L then VM is truth functional with

F¬(x) = 1− x, F∧(x, y) = min{x, y}, F∨(x, y) = max{x, y}.

(b) Assume that w is a probability function and w(φ) = 1
2 . Then

w(¬φ) = 1− 1

2
=

1

2

and if w was truth-functional, we would have

0 = w(φ ∧ ¬(φ)) = F∧

(
1

2
,
1

2

)
= w(φ ∧ φ) = 1

2
,

contradiction.

(c)We have Bel(¬R(ai, aj)) = 1− 0.4 = 0.6 so

Bel(¬R(a1, a1) ∧ ¬R(a1, a2) ∧R(a2, a1) ∧R(a2, a2)) = 0.4.

We can specify various probability functions w satisfying w(R(ai, aj)) = 0.4
for i, j ∈ {1, 2} using the scheme (12) (and then Gaifman’s theorem). We
shall use the matrix notation to represent state descriptions Θ(a1, a2). Let
x1, x2, . . . , x16 stand, in this order, for w of the state descriptions represented
by

(
0 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 0
1 1

)
,

(
0 1
0 0

)
, . . . ,

(
1 1
1 1

)

(so w

(
d1,1 d1,2
d2,1 d2,2

)
= x(1+d2,2+2d2,1+4d1,2+8d1,1)).
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The conditions w(⊤) = 1 and w(R(ai, aj) = 0.4 for i, j ∈ {1, 2} amount to

16∑

i=1

xi = 1

and

16∑

i=9

xi =
8∑

i=5

xi+
16∑

i=13

xi = x3+x4+x7+x8+x11+x12+x15+x16 =
8∑

i=1

x2i = 0.4

Any solution satisfying xi ≥ 0 for all i extends to probability functions on
SL (for example, we can define w for larger state descriptions to satisfy (12)
by giving each extension of a state description for a1, a2 equal value). Note
that

w(¬R(a1, a1) ∧ ¬R(a1, a2) ∧R(a2, a1) ∧R(a2, a2))

is x4.

So for example, two possible solutions are obtained as above from

x1 = x2 = x4 = x13 = x17 = 0.2; xi = 0 otherwise

and
x1 = 0.2, x8 = x9 = 0.4; xi = 0 otherwise.

3. w1 satisfies conditions (12): (i) and (ii) are obvious, and (iii) holds since
for a state description

Θ(a1, a2, . . . , am)) =
m∧

i=1

P ϵi(ai)

of L1,

∑

Φ(a1,...,am+1)|=Θ(a1,...,am)

w1(Φ(a1, a2, . . . , am+1)) =

w1

(
m∧

i=1

P ϵi(ai) ∧ P (am+1)

)
+ w1

(
m∧

i=1

P ϵi(ai) ∧ ¬P (am+1)

)
=
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w2

(
m∧

i=1

Rϵi(a2i+1, a2i+2) ∧ (R(a2m+1, a2m+2) ∨ ¬R(a2m+1, a2m+2))

)
=

w2

(
m∧

i=1

Rϵi(a2i+1, a2i+2)

)
= w1(Θ(a1, a2, . . . , am)).
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Unary Pure Inductive Logic

Pure Inductive Logic was first developed for unary languages (Johnson, Car-
nap). We will now survey the most significant results within this context;
in this section, all relation symbols R1, R2, . . . , Rq in L are assumed to be
unary. As such they are referred to more often as predicate rather than
relation symbols.

By α1(x),α2(x), . . . ,α2q(x) we denote the 2q atoms of L, that is, the formulae
of the form

±R1(x) ∧±R2(x) ∧ . . . ∧±Rq(x).

These atoms are pairwise disjoint (exclusive) and exhaustive, that is,

For i ̸= k, ! ¬(αi(x) ∧ αk(x)) and ! ∀x
2q∨

j=1

αj(x).

We list them in the lexicographic order with + before - so for example when
L = {R1, R2, R3}, we have

α1(x) = R1(x) ∧R2(x) ∧R3(x), α2(x) = R1(x) ∧R2(x) ∧ ¬R3(x),
α3(x) = R1(x) ∧ ¬R2(x) ∧R3(x), α4(x),= R1(x) ∧ ¬R2(x) ∧ ¬R3(x),
α5(x) = ¬R1(x) ∧R2(x) ∧R3(x), α6(x) = ¬R1(x) ∧R2(x) ∧ ¬R3(x),
α7(x) = ¬R1(x) ∧ ¬R2(x) ∧R3(x), α8(x) = ¬R1(x) ∧ ¬R2(x) ∧ ¬R3(x).

A state description Θ(b1, b2, . . . , bm) has the form

q∧

j=1

m∧

i=1

±Rj(bi) ≡
m∧

i=1

αhi(bi).

In the unary context Ex can be expressed in a particularly simple way.
For a state description

∧m
i=1 αhi(bi), define its signature to be the vector

⟨m1,m2, . . . ,m2q⟩, owhere mj = |{i |hi = j}|.

Constant Exchangeability (Unary Version): w (
∧m

i=1 αhi(bi)) depends
only on the signature of

∧m
i=1 αhi(bi).

Informally, this is because Ex says that it does not matter which b1, . . . , bm
figure in

∧m
i=1 αhi(bi) and the order of conjuncts does not matter by (Pd).
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[Formally, assume that the value of w on
∧n

i=1 αhi(bi) depends only on the
signature of

∧n
i=1 αhi(bi). Then the condition from Lemma 1 holds since

for a permutation τ of {1, 2, . . . ,m}, the state descriptions
∧m

i=1 αhi(ai) and∧m
i=1 αhi(aτ(i)) have the same signature. Hence by that Lemma, w satisfies

Ex on QFSL and by Gaifman’s theorem also on the whole of SL.

Conversely, if w satisfies Ex and ak1 , . . . , akm , aj1 , . . . , ajm are distinct con-
stants and Φ =

∧m
i=1 αhi(aki), Θ =

∧m
i=1 αgi(aji) are state descriptions with

the same signature then there is a bijection σ : {k1, . . . , km} → {j1, . . . , jm}
extendable to a permutation σ of N+ such that

∧m
i=1 αgi(aji) ≡

∧m
i=1 αhi(aσ(ki)).

By Problem I.4, w gives the same values to Φ,Θ as required.]

Functions wc⃗

Let

D2q = { ⟨x1, x2, . . . , x2q⟩ ∈ R2q | x1, . . . , x2q ≥ 0,
2q∑

i=1

xi = 1 }

and
c⃗ = ⟨c1, c2, . . . , c2q⟩ ∈ D2q .

Define wc⃗ by setting

wc⃗

(
m∧

i=1

αhi(ai)

)
=

m∏

i=1

wc⃗(αhi(ai)) =
m∏

i=1

chi =
2q∏

j=1

c
mj

j (17)

where mj = |{ i |hi = j }| for j = 1, 2, . . . , 2q. Then conditions (12) are
satisfied, so wc⃗ extends uniquely to a probability function onQFSL satisfying
(P1-2) - and hence to a probability function on SL - via

wc⃗

(
m∧

i=1

αhi(bi)

)
=

∑

Φ(a1,...,an)!
∧m

i=1 αhi
(bi)

wc⃗(Φ(a1, . . . , an)),

where the Φ are state descriptions as usual. This gives again

wc⃗

(
m∧

i=1

αhi(bi)

)
=

m∏

i=1

chi
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as apparent from the following example:

wc⃗ (α1(a2) ∧ α3(a4)) =
∑

Φ(a1,...,a4)!α1(a2)∧α3(a4)

wc⃗(Φ(a1, . . . , an))

=
2q∑

k,j=1

wc⃗(αk(a1) ∧ α1(a2) ∧ αj(a3) ∧ α3(a4)) =
2q∑

k,j=1

ckc1cjc3 =

=

(
2q∑

k=1

ck

)
c1

(
2q∑

j=1

ck

)
c3 = c1c3.

Clearly, wc⃗ satisfies Ex. However, Px and SN hold only for special choices
of c⃗, see Problem IV.2. They do satisfy the following strong independence
condition:

The Constant Irrelevance Principle, IP

If θ,φ ∈ QFSL have no constant symbols in common then

w(θ ∧ φ) = w(θ) · w(φ)

Proposition 4 Let w be a probability function on SL satisfying Ex. Then
w satisfies IP just if w = wc⃗ for some c⃗ ∈ D2q .

Proof First notice that for c⃗ ∈ D2q and state descriptions
∧n

i=1 αhi(aji),∧m
i=1 αgi(aki) with no constant symbols in common,

wc⃗

(
n∧

i=1

αhi(aji) ∧
m∧

i=1

αgi(aki)

)
=

n∏

i=1

chi ·
m∏

i=1

cgi

= wc⃗

(
n∧

i=1

αhi(aji)

)
· wc⃗

(
m∧

i=1

αgi(aki)

)
.

Hence if θ,φ ∈ QFSL have no constant symbols in common and θ ≡
∨

Θ∈S Θ,
φ ≡

∨
Φ∈T Φ with the Θ,Φ state descriptions (for the ai in θ,φ respectively)
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then

wc⃗(θ ∧ φ) = wc⃗

(
∨

Θ∈S

Θ ∧
∨

Φ∈T

Φ

)
= wc⃗

(
∨

Θ∈S

∨

Φ∈T

Θ ∧ Φ

)

=
∑

Θ∈S

∑

Φ∈T

wc⃗(Θ ∧ Φt) =
∑

Θ∈S

∑

Φ∈T

wc⃗(Θj) · wc⃗(Φt)

=
∑

Θ∈S

wc⃗(Θj) ·
∑

Φ∈T

wc⃗(Φt) = wc⃗(θ) · wc⃗(φ).

Conversely if w satisfies Ex and IP then by repeated application

w

(
n∧

i=1

αhi(aji)

)
=

n∏

i=1

w(αhi(aji)) =
n∏

i=1

w(αhi(a1)) =
n∏

i=1

chi

where ci = w(αi(a1)) for i = 1, 2, . . . , 2q. Since w is determined by its values
on state descriptions this forces w = wc⃗, as required. "

de Finetti’s Representation Theorem

Let L = {R1, . . . , Rq} be a unary language and let w be a probability func-
tion on SL satisfying Ex. Then there is a (normalized, countably additive)
measure µ on the Borel subsets of D2q such that

w

(
m∧

i=1

αhi(bi)

)
=

∫

D2q

2q∏

j=1

x
mj

j dµ(x⃗)

=

∫

D2q

wx⃗

(
m∧

i=1

αhi(bi)

)
dµ(x⃗), (18)

where mj = |{i |hi = j}| for j = 1, 2, . . . , 2q.

Conversely, given a measure µ on the Borel subsets of D2q the function w
defined by (18) extends uniquely to a probability function on SL satisfying
Ex.

Proof We will prove the result for q = 1, the full case being similar. For
q = 1 there are just two atoms, α1(x) = R1(x) and α2(x) = ¬R1(x). Hence
(as far as values of any w satisfying Ex are concerned) state descriptions∧m

i=1 αhi(bi) are fully characterized by two numbers

m1 = |{i |hi = 1}|, m2 = |{i |hi = 2}| (with m1 +m2 = m).
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If w is a probability function satisfying Ex and m1,m2 as above, we define

w(m1,m2) = w

(
m∧

i=1

αhi(bi)

)
(19)

For fixed m1,m2 there are

(
m

m1

)
distinct possibilities for the ordering of the

h1, h2, . . . , hm. Let r > m. Since state descriptions for b1, . . . , br are exclusive
and exhaustive,

1 = w(⊤) =
∑

r1+r2=r

(
r

r1

)
w(r1, r2). (20)

Also, considering which of them extend a given
∧m

i=1 αhi(bi) as above,

w(m1,m2) =
∑

r1+r2=r
m1≤r1,m2≤r2

(
r −m

r1 −m1

)
w(r1, r2). (21)

From (20) let µr be the discrete measure on D2 which puts measure
(

r

r1

)
w(r1, r2)

on the point ⟨r1/r, r2/r⟩ ∈ D2. Note that from (21) we obtain that w(m1,m2)
equals

∑

r1+r2=r
m1≤r1,m2≤r2

(
r −m

r1 −m1

)(
r

r1

)−1( r

r1

)
w(r1, r2). (22)

We shall show that
∣∣∣∣∣

(
r −m

r1 −m1

)(
r

r1

)−1

−
(r1
r

)m1
(r2
r

)m2

∣∣∣∣∣ (23)

tends to 0 as r → ∞ uniformly in r1, r2.

Notice that the left hand term in (23) can be written as

(r1
r

)m1
(r2
r

)m2 (1− r−1
1 ) · · · (1− (m1 − 1)r−1

1 )(1− r−1
2 ) · · · (1− (m2 − 1)r−1

2 )

(1− r−1) · · · (1− (m− 1)r−1)
.

(24)
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We now consider cases.

• If m1 = m2 = 0 then (23) is zero.

• If m2 > 0 and r2 ≤
√
r then both terms in (23) are less than r−m2/2 ≤ r−1/2

(this is justified for large r e.g because for any r1 ≤ r, s ≤ m1 we have
1−sr−1

1
1−sr−1 ≤ 1 and for

√
r > m, s ≤ m2, we have 1−sr−1

2
1−(m1+s)r−1 ≤ 1)

and similarly if m1 > 0 and r1 ≤
√
r. If m2 > 0 and r2 >

√
r and either

m1 = 0 or r1 >
√
r then using (24) and the fact that r1/r, r2/r ≤ 1 we see

that (23) is at most

1− (1−
√
r −1) . . . (1− (n− 1)

√
r −1)(1−

√
r −1) . . . (1− (k − 1)

√
r −1)

(1− r−1) . . . (1− (n+ k − 1)r−1)
.

Similarly if m1 > 0 and r1 >
√
r and either m2 = 0 or r2 >

√
r, and together

we have covered all cases.

Hence from (20) and (22) w(m1,m2) equals the limit as r → ∞ of

∑

r1+r2=r
m1≤r1,m2≤r2

(r1
r

)m1
(r2
r

)m2

µr({⟨r1/r, r2/r⟩}). (25)

In turn this equals the limit of the same expressions but summed simply over
0 ≤ r1, r2, r1 + r2 = r since from (20) (or trivially if m1 = 0),

∑

r1+r2=r
r1<m1,m2≤r2

(r1
r

)m1
(r2
r

)m2

µr({⟨r1/r, r2/r⟩}), etc.

tends to zero as r → ∞.

In other words,

w(m1,m2) = lim
r→∞

∫

D2

xm1
1 xm2

2 dµr(⟨x1, x2⟩). (26)

By Prohorov’s Theorem, see for example [4, Theorem 5.1], since D2 is com-
pact the µr have a subsequence µir weakly convergent to a countably additive
measure µ, meaning that for any continuous function f(x1, x2)

lim
r→∞

∫

D2

f(x1, x2) dµir(⟨x1, x2⟩) =
∫

D2

f(x1, x2) dµ(⟨x1, x2⟩).
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Using this the required result follows from (26).

Finally the converse result, that functions w defined by (18) extend to prob-
ability functions on SL satisfying Ex follows by Theorem 3. "

From (18) it follows that the integrals

∫

D2

f(x1, x2) dµ(⟨x1, x2⟩)

are uniquely determined by w for any polynomial f(x1, x2), and hence (see
for example [3]) that µ must be the unique measure satisfying (18). We shall
call this measure the de Finetti prior of w.

de Finetti’s Theorem generalizes directly to SL and indeed in what follows
we shall use that name in this extended sense. Precisely:

Corollary 5 Let w be a probability function on SL satisfying Ex. Then
there is a measure µ on D2q (the de Finetti prior of w in fact) such that for
θ ∈ SL,

w(θ) =

∫

D2q

wx⃗(θ) dµ(x⃗). (27)

Conversely given a measure µ on D2q , w defined by (27) is a probability
function on SL satisfying Ex.

In other words every probability function w on SL is a convex mixture

w =

∫

D2q

wx⃗ dµ(x⃗), (28)

of the wc⃗ for c⃗ ∈ D2q .

Proof de Finetti Theorem gives this for θ a state description, hence for θ ∈
QFSL, and then in turn for any θ ∈ SL by induction on quantifier complexity
and Lebesgue’s Dominated Convergence Theorem. The converse follows by
checking (P1-3) noting that the functions x⃗ /→ wx⃗(θ) are measurable. "
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Problems 4

1. Let λ > 0. Show that there is a unique probability function w such that
for any 0 ≤ j ≤ 2q and any state description

∧m
i=1 αhi(ai)

w

(
αj(am+1) |

m∧

i=1

αhi(ai)

)
=

mj + λ2−q

m+ λ
(29)

where mj = |{i |hi = j}|. Show that this w satisfies Ex.

2. Let L contain just two unary predicates.

(a) Write down conditions under which wc⃗ satisfy Px and SN respectively.

(b) Find c⃗, d⃗ such that wc⃗ does not satisfy Px but 1
2(wc⃗ + wd⃗) does.

3. (a) Let L contain just two unary predicates and assume that w satisfy Ex
and that w(α1(a1)), w(α2(a1)) > 0. By considering

∫

D4

(bx1 − cx2)
2 dµ(x)

for a suitable choice of constants c, b show that we cannot have both

w(α1(a2) |α1(a1)) < w(α1(a2) |α2(a1)) and w(α2(a2) |α2(a1)) < w(α2(a2) |α1(a1)).

Give an example of a probability function w satisfying Ex for which the first
of these does hold.

(b) Assume now that w satisfies Ex+SN. Show that

w(α1(a1) ∧ α1(a2)) = w(α2(a1) ∧ α2(a2)) ≥ w(α1(a1) ∧ α2(a2))

and hence that in this case

w(α1(a2) |α1(a1)) ≥ w(α1(a2)) |α2(a1)).

Show that if w satisfies Ex+SN+Px then we can only have equality here if
w = c∞.
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Solutions to Problems 4

1. Consider the values such a function must give to state descriptions. Note

that any probability function v satisfies

v

(
n∧

i=1

αhi(ai)

)
=

n∏

j=1

v

(
αhj(aj) |

j−1∧

i=1

αhi(ai)

)
.

Accordingly, for a state description

n∧

i=1

αhi(ai)

let rj be the number of times that hj occurs amongst h1, h2, . . . , hj−1 and
with a view to use (12), define w(⊤) = 1 and

w

(
n∧

i=1

αhi(ai)

)
=

n∏

j=1

(
rj + λ2−q

j − 1 + λ

)

Then the condition (i) and (ii) from (12) are clearly satisfied. For (iii) note
that if

Θ(a1, a2, . . . , an) =
n∧

i=1

αhi(ai)

then

∑

Φ(a1,...,an+1)|=Θ(a1,...,an)

w(Φ(a1, a2, . . . , an+1)) =
2q∑

k=1

w

((
n∧

i=1

αhi(ai)

)
∧ αk(an+1)

)

=
2q∑

k=1

w

(
n∧

i=1

αhi(ai)

)
·
(
mk + λ2−q

n+ λ

)

so since the mk sum to n, (iii) holds, too. The existence and uniqueness of an
extension to a probability function on SL follows (cf Section 3). Furthermore,
the extension satisfies Ex by Lemma 1 since from the above it can be see that

w

(
n∧

i=1

αhi(ai)

)
=

∏2q

k=1

∏mk−1
j=0 (j + λ2−q)

∏n−1
j=0 (j + λ)
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and this expression depends only on the signature ⟨m1, . . . ,m2q⟩ of
∧n

i=1 αhi(ai).

2. Let L = {P,Q} and, as usual,

α1(x) = P (x)∧Q(x), α2(x) = P (x)∧¬Q(x), α3(x) = ¬P (x)∧Q(x), α4(x) = ¬P (x)∧¬Q(x)

Let c⃗ = ⟨c1, c2, c3, c4⟩. If wc⃗ satisfies Px we must have

wc⃗(α2(a1)) = wc⃗(α3(a1)).

Hence c2 = c3. This condition is sufficient since permuting P and Q in a
state description amounts to swapping α2 and α3, so any wc⃗ with c2 = c3
satisfies Px for state descriptions, and hence on SL.

If wc⃗ satisfies SN then it gives equal value to all atoms (since any atom can be
transformed to any other by adding or removing negations). Since, moreover,

1 = w(⊤) = w

(
4∧

i=1

αi(a1)

)

c⃗ must be
〈
1
4 ,

1
4 ,

1
4 ,

1
4

〉
.

(b) For any c⃗ with c2 ̸= c3, wc⃗ does not satisfy Px but if d⃗ = ⟨c1, c3, c2, c4⟩
then 1

2(wc⃗ + wd⃗) does: It suffices to check it for state descriptions, so if
Θ =

∧m
i=1 αhi(ai) has signature ⟨m1,m2,m3,m4⟩ then swapping P and Q

produces a state description Θ′ obtained from Θ by swapping α2 with α3

everywhere and hence a state description with signature ⟨m1,m3,m2,m4⟩.
We have

1

2
(wc⃗ + wd⃗)(Θ) =

1

2
(cm1

1 cm2
2 cm3

3 cm4
4 + cm1

1 cm2
3 cm3

2 cm4
4 ) =

1

2
(wc⃗ + wd⃗)(Θ

′)

as required.

3. Assume that

w(α1(a2) |α1(a1)) < w(α1(a2) |α2(a1)) and w(α2(a2) |α2(a1)) < w(α2(a2) |α1(a1))

do hold, and let µ be the de Finetti prior of w. The above inequalities yield
∫
D4

x2
1 dµ∫

D4
x1 dµ

<

∫
D4

x1x2 dµ∫
D4

x2 dµ
,

∫
D4

x2
2 dµ∫

D4
x2 dµ

<

∫
D4

x1x2 dµ∫
D4

x1, dµ
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so setting

b =

∫

D4

x2 dµ, c =

∫

D4

x1 dµ

we have

b

∫

D4

x2
1 dµ < c

∫

D4

x1x2 dµ, c

∫

D4

x2
2 dµ < b

∫

D4

x1x2 dµ,

Multiplying the first inequality by b, the second one by c and adding them
yields ∫

D4

(bx1 − cx2)
2 dµ(x) < 0,

contradiction.

To find a required example, after checking that the strict inequality fails for
the wx⃗, try

1
2(wx⃗ + wy⃗); in this case the first inequality anounts to

x2
1 + y21

x1 + y1
<

x1x2 + y1y2
x2 + y2

which simplifies to give

(x1 − y1)(x1y2 − y1x2) < 0.

This holds for example when x⃗ = ⟨0.1, 0.2, 0.3, 0.4⟩ and y⃗ = ⟨0.2, 0.6, 0.1, 0.1⟩.

(b) By SN, we can see that

w(α1(a1)) = w(α2(a1)), w(α1(a1) ∧ α1(a2)) = w(α2(a1) ∧ α2(a2))

and by Ex,
w(α1(a1) ∧ α2(a2)) = w(α2(a1) ∧ α1(a2))

so the first claim follows from (a).

Assume
w(α1(a2) |α1(a1)) = w(α1(a2)) |α2(a1)),

so since w(α1(a1)) = w(α2(a1)),

w(α1(a2) ∧ α1(a1)) = w(α1(a2)) ∧ α2(a1)).
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By SN, also
w(α2(a2) ∧ α2(a1)) = w(α2(a2)) ∧ α1(a1)),

w(α3(a2) ∧ α3(a1)) = w(α3(a2)) ∧ α4(a1)),

w(α4(a2) ∧ α4(a1)) = w(α4(a2)) ∧ α3(a1))

and by Px moreover

w(α1(a2) ∧ α1(a1)) = w(α1(a2)) ∧ α3(a1)),

w(α3(a2) ∧ α3(a1)) = w(α3(a2)) ∧ α1(a1)).

Writing out what these mean in terms of the se Finettti representation and
addiing suitable pairs of equalities, we obtain

∫

D4

(x1 − x2)
2 dµ(x) =

∫

D4

(x3 − x4)
2 dµ(x) =

∫

D4

(x1 − x3)
2 dµ(x) = 0,

whih means that x1 = x2, x3 = x4 and x1 = x3 on D4 so x1 = x2 = x3 = x4

except possibly on a set of µmeasure 0, which means that w is c∞ as required.
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Further Unary Principles

As in the previous section, all relation symbols R1, R2, . . . , Rq in L are as-
sumed to be unary in this one.

The following principle is an attempt at formalizing the requirement that
upon witnessing an instance of something occurring, one’s belief in encoun-
tering it again should increase (or at least stay the same).

The Principle of Instantial Relevance, PIR1 For θ(a1, a2, . . . , an) ∈ SL
and atom α(x) of L,

w(α(an+2) |α(an+1)∧θ(a1, a2, . . . , an)) ≥ w(α(an+2) | θ(a1, a2, . . . , an)). (30)

Using de Finetti’s theorem we can show that PIR is in fact is a consequence
of Ex.

Theorem 6 Ex implies PIR

Proof We will write a⃗ for a1, a2, . . . , an. Let the probability function w on
SL satisfy Ex. Employing the notation of (30), let α(x) = α1(x) and denote
A = w(θ(⃗a)) . Then for µ the de Finetti prior for w (using the fact that by
Proposition 4 the wx⃗ satisfy IP)

A = w(θ(⃗a)) =

∫

D2q

wx⃗(θ(⃗a)) dµ(x⃗) ,

w(α1(an+1) ∧ θ(⃗a)) =
∫

D2q

x1wx⃗(θ(⃗a)) dµ(x⃗),

w(α1(an+2) ∧ α1(an+1) ∧ θ(⃗a)) =
∫

D2q

x2
1wx⃗(θ(⃗a)) dµ(x⃗)

and (30) amounts to

(∫

D2q

wx⃗(θ(⃗a)) dµ(x⃗)

)
·
(∫

D2q

x2
1wx⃗(θ(⃗a)) dµ(x⃗)

)
≥
(∫

D2q

x1wx⃗(θ(⃗a)) dµ(x⃗)

)2

.

(31)

1In what follows we use a convention that expressions like w(φ)
w(ψ) = w(θ)

w(η) stand for

w(φ)w(η) = w(θ)w(ψ) so denominators can be 0.
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If A = 0 then this clearly holds (because the other two integrals are less or
equal to A and greater equal zero) so assume that A ̸= 0. In that case (31)
is equivalent to

∫

D2q

(
x1A−

∫

D2q

x1wx⃗(θ(⃗a)) dµ(x⃗)

)2

wx⃗(θ(⃗a)) dµ(x⃗) ≥ 0 (32)

as can be seen by multiplying out the square and dividing by A. But obvi-
ously, being an integral of a non-negative function, (32) holds, as required.
"

The next principle is justified on the grounds of symmetry, similarly as Ex.
Rather than symmetry between constants though in this case the claim is that
in the situation of zero knowledge the atoms are interchangeable. Precisely:

The Atom Exchangeability Principle, Ax

For any permutation τ of {1, 2, . . . , 2q} and constants b1, b2, . . . , bm,

w

(
m∧

i=1

αhi(bi)

)
= w

(
m∧

i=1

ατ(hi)(bi)

)
. (33)

Equivalently, in the presence of Ex, Ax asserts that the left hand side of (33)
depends only on the spectrum of the state description

∧m
i=1 αhi(bi), that is on

the multiset {m1,m2, . . . ,m2q}, where, again, mj = |{i |hi = j}|.

Quite diffferent in motivation is the following principle (intended to be con-
sidered in the presence of Ex):

Reichenbach’s Axiom, RA

Let αhi(x) for i = 1, 2, 3, ... be an infinite sequence of atoms of L. Then for
αj(x) an atom of L,

lim
n→∞

(
w

(
αj(an+1) |

n∧

i=1

αhi(ai)

)
− uj(n)

n

)
= 0 (34)

where uj(n) = |{i | 1 ≤ i ≤ n and hi = j}|.

Informally, this asserts that as the number of constants, of which everything
is known, grows, w should see this information as a statistical sample so
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that the probability that the next constant will satisfy the atom αj and the
frequency of past instances of αj(ai) get closer and closer.

We remark that although this may seem very common sense in situations
where the the sequences uj(n)/n converge, the principle does not assume it.

The next principle draws on the idea that irrelevant information can/should
be ignored. It has played a crucial role in Inductive Logic since its inception.

Johnson’s Sufficientness Postulate, JSP

w

(
αj(an+1) |

n∧

i=1

αhi(ai)

)
(35)

depends only on n and r = |{ i | 1 ≤ i ≤ n and hi = j }| i.e. the number of
times that αj occurs amongst the αhi for i = 1, 2, . . . , n.

Note in particular that (35) does not depend on j, all atoms are treated in
the same way.

The functions defined in Problem 4.1 clearly satisfy JSP. We refer to them
as Carnap continuum functions and denote them cLλ , so for λ > 0,

cLλ

(
αj(an+1) |

n∧

i=1

αhi(ai)

)
=

mj + λ2−q

n+ λ

where mj = |{i | 1 ≤ i ≤ n and hi = j}|. The same expressions with 0 or ∞
in place of λ lead us to define cL∞ by

cL∞

(
n∧

i=1

αhi(ai)

)
= 2−qn

and cL0 by

cL0

(
n∧

i=1

αhi(ai)

)
=

{
2−q if h1 = h2 = . . . = hn,

0 otherwise.

Theorem 7 Suppose that the unary language L has at least two relation
symbols, i.e. q ≥ 2. Then the probability function w on SL satisfies Ex and
JSP if and only if w = cLλ for some 0 ≤ λ ≤ ∞.
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Proof It is clear from their defining equations that the cLλ satisfy JSP.

For the other direction assume that w satisfies JSP. Then w satisfies Ax
(Problem 5.3) so since

1 = w

(
2q∨

i=1

αi(a1)

)
=

2q∑

i=1

w(αi(a1)),

we have w(αi(a1)) = 2−q for all i. Now suppose that

w

(
n∧

i=1

αhi(ai)

)
= 0

for some state description. We may assume that n is minimal; clearly n > 1.
If h1 = h2 then by PIR

0 = w

(
αh1(a1) |

n∧

i=2

αhi(ai)

)
≥ w

(
αh1(a1) |

n∧

i=3

αhi(ai)

)

so

w

(
n∧

i=2

αhi(ai)

)
= 0

etc., contradicting the minimality of n. Hence all the hi must be different.
So by JSP

0 = w

(
αh1(a1) |

n∧

i=2

αhi(ai)

)
= w

(
α1(a1) |

n∧

i=2

α2(ai)

)

and we must have

w

(
α1(a1) ∧

n∧

i=2

α2(ai)

)
= 0.

Hence n = 2. This means that for any n, whenever the hi are not all equal,
we have

w

(
n∧

i=1

αhi(ai)

)
= 0

and consequently w = cL0 .

So now assume that w is non-zero on all state descriptions. Let
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g(r, n) = w

(
αj(an+1) |

n∧

i=1

αhi(ai)

)
.

where r = |{ i |hi = j }|. Note that g(0, 0) = 2−q and

1 > g(r, n) > 0

for all n, r. From

1 = w

(
2q∨

i=1

αi(a2) |αj(a1)

)
=

2q∑

i=1

w(αi(a2) |αj(a1))

we get
g(1, 1) + (2q − 1)g(0, 1) = 1. (36)

By PIR, g(1, 1) ≥ g(0, 0) so

1 > g(1, 1) ≥ 2−q.

Hence for some 0 < λ ≤ ∞,

g(1, 1) =
1 + 2−qλ

1 + λ
, g(0, 1) =

2−qλ

1 + λ
,

(by Problem 5.4 and (36)).

We now show by induction on n ∈ N that for this same λ

g(r, n) =
r + λ2−q

n+ λ
(r = 0, 1, . . . , n). (37)

We have already shown it for n = 0, 1. Assume that n ≥ 1 and (37) holds
for n. For u+ v = n+ 1, and distinct m, k,

1 = w

(
2q∨

h=1

αh(an+1) |
u∧

i=1

αm(ai) ∧
n+1∧

i=u+1

αk(ai)

)

so
1 = g(u, n+ 1) + g(v, n+ 1) + (2q − 2)g(0, n+ 1). (38)
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We shall write αh1αh2 . . .αhn etc. for

n∧

i=1

αhi(ai).

For r + s+ t = n and distinct m, j, k,

w(αm |αjαr
mα

s
jα

t
k) · w(αj |αr

mα
s
jα

t
k) = w(αmαj |αr

mα
s
jα

t
k)

= w(αj |αmαr
mα

s
jα

t
k) · w(αm |αr

mα
s
jα

t
k).

so1

g(r, n+ 1)g(s, n) = g(s, n+ 1)g(r, n). (39)

Using s = 0 and the inductive hypothesis gives

g(r, n+ 1) = (rλ−12q + 1)g(0, n+ 1). (40)

Taking u = 1, v = n in (38) and using r = 1, n in (40) gives

(λ−12q + 1)g(0, n+ 1) + (nλ−12q + 1)g(0, n+ 1) + (2q − 2)g(0, n+ 1) = 1

and hence

g(0, n+ 1) =
λ2−q

n+ 1 + λ
.

Substituting in (40) now gives (37) too for n + 1 and r = 1, 2, . . . , n, and
finally also for r = n+ 1 using (38) with u = 0, v = n+ 1. "

1Note this is where we need q ≥ 2.
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Problems 5

1. Let L be a unary language.

(a) Show that any probability function w which satisfies SN also satisfies (33)
for m = 1, that is, for any constant b and any two atoms αk,αj,

w (αk(b)) = w (αj(b)) .

(b) Find a probability function which satisfies SN but not Ax.

2.. (a) Let L be a unary language and c⃗ ∈ D2q . Show that the function

vc⃗ = |S2q |−1
∑

σ∈S2q

w⟨cσ(1),cσ(2),...,cσ(2q)⟩,

where S2q is the set of all permutations of {1, 2, . . . , 2q}, satisfies Ax.
(b) For functions satisfying Ex and Ax, conjecture and prove a representation
theorem, using the functions vc⃗ from (a) .

(c) Conjecture and prove representation theorem for functions satisfying Ex
and Px.

3. Show that JSP implies Ax.

4. Let 1 > x > a. Show that there is λ > 0 such that

x =
1 + aλ

1 + λ

and that, consequently, if x+ (a−1 − 1)y = 1 then

y =
aλ

1 + λ
.
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Solutions to Problems 5

1.(a) If w satisfies SN then it gives equal value to all atoms (since any atom
can be transformed to any other by adding or removing negations).

(b) Let L = {R,Q} where R,Q are unary. Let

w =
1

2
(w⟨1/2,1/2,0,0⟩ + w⟨0,0,1/2,1/2⟩).

Recall that to check that w satisfies SN it suffices to check that is satisfies it
for state descriptions. Note that

w⟨1/2,1/2,0,0⟩

(
m∧

i=1

αki(bi)

)
=

{
1
2

(
1
2

)m
if ki ∈ {1, 2} for all m

0 otherwise

and similarly

w⟨0,0,1/2,1/2⟩

(
m∧

i=1

αki(bi)

)
=

{
1
2

(
1
2

)m
if ki ∈ {3, 4} for all m

0 otherwise

Replacing R by ¬R throughout a state description

m∧

i=1

αki(bi)

means swapping α1 with α3 and α2 with α4 everywhere, so clearly w gives
the resulting state description the same value. Similarly replacing Q by
¬Q everywhere. Hence w satisfies SN. However, w does not satisfy Ax as
apparent for example by considering the value it gives to α1(a1)∧α2(a2) and
α2(a1) ∧ α3(a2).
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2. (a) Let τ ∈ S2q .

vc⃗

(
m∧

i=1

ατ(hi)(bi)

)
= |S2q |−1

∑

σ∈S2q

w⟨cσ(1),cσ(2),...,cσ(2q)⟩

(
m∧

i=1

ατ(hi)(bi)

)

= |S2q |−1
∑

σ∈S2q

m∏

i=1

cσ(τ(hi))

= |S2q |−1
∑

στ∈S2q

m∏

i=1

cσ(τ(hi)),

since σ /→ στ just permutes S2q ,

= |S2q |−1
∑

σ∈S2q

m∏

i=1

cσ(hi),

= vc⃗

(
m∧

i=1

αhi(bi)

)
.

(b) Representation Theorem for Ax Let L be a unary language with q
relation symbols and let w be a probability function on SL satisfying Ax (and
Ex). Then there is a measure µ on the Borel subsets of D2q such that

w =

∫

D2q

vx⃗ dµ(x⃗). (41)

Conversely, given a measure µ on the Borel subsets of D2q the probability
function w on SL defined by (41) satisfies Ax (and Ex).

Proof Suppose that w satisfies Ax. By de Finetti’s Representation Theorem
there is a measure µ such that for a state description

∧m
i=1 αhi(bi) and σ ∈ S2q ,

w

(
m∧

i=1

ασ(hi)(bi)

)
=

∫

D2q

w⟨x1,x2,...,x2q ⟩

(
m∧

i=1

ασ(hi)(bi)

)
dµ(x⃗)

=

∫

D2q

w⟨xσ(1),xσ(2),...,xσ(2q)⟩

(
m∧

i=1

αhi(bi)

)
dµ(x⃗) (42)

Since w satisfies Ax,

w

(
m∧

i=1

ασ(hi)(bi)

)
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is the same for any σ ∈ S2q so averaging both sides of (42) over all σ ∈ S2q

gives (41) when we restrict w and vx⃗ to state descriptions. The general version
follows as de Finetti’s Theorem. The converse result is straightforward.

3. Since

w

(
n∧

i=1

αhi(ai)

)
=

n∏

j=1

w(αhj(aj) |
j−1∧

i=1

αhi(ai))

(with both sides zero if not all the conditional probabilities are defined) JSP
gives that this right hand side is invariant under permutations of atoms.
Hence so is the left hand side and this yields the result.

4. Differentiating shows that the continuous function

f(λ) =
1 + aλ

1 + λ

is decreasing from 1 to a for λ ∈ (0,∞), so for any x ∈ (a, 1) there must be
some λ ∈ (0,∞) such that f(λ) = x. The rest is obvious.
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Polyadic Pure Inductive Logic

To start with, we shall restrict our considerations to the case of L containing
a single, binary, relation symbol R. It reduces notational difficulties while
still allowing insight into the polyadic context.

Note that in this case state descriptions for a1, . . . , an have the form

Θ(a1, . . . , an) =
n∧

i,j=1

±R(ai, aj)

where as before ±R stands for R or ¬R. To make this easier to work with,
we can also write

Θ(a1, . . . , an) =
n∧

i,j=1

Rti,j(ai, aj)

where ti,j ∈ {0, 1} and R0 stands for ¬R, R1 stands for R. This allows us
to represent Θ by the n × n {0, 1}-matrix T = (ti,j).1 (Recall that we have
already used such a representation in Problems III.)

We now introduce probability functions wD which play a role similar to that
played in the unary case by the wx⃗. Let D = (di,j) be an N × N {0, 1}-
matrix (it is best to think of N as large although it can be any nonzero
natural number).

Define a probability function wD on SL by setting

wD

(
∧

i,j≤n

Rti,j(ai, aj)

)

to be the probability of (uniformly) randomly picking, with replacement,
h(1), h(2), . . . , h(n) from {1, 2, . . . , N} such that for each i, j ≤ n,

dh(i),h(j) = ti,j.

This does uniquely determines a probability function on SL satisfying Ex,
see Problem 6.1(b).

Clearly convex mixtures of these wD also satisfy Ex. Conversely, any proba-
bility function satisfying Ex can be expressed as an integral of standard parts

1Information about the exact constants involved is lost, but since we will only consider
probability function satisfying Ex, it will not matter.
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of such wD with non-standard D. Remaining within standard mathematics,
we shall just sketch how to show that any probability function w satisfying
Ex can be approximated arbitrarily closely on QFSL by convex mixtures of
the wD. More precisely:

Lemma 2 For a probability function w on SL satisfying Ex and θ1, . . . , θm ∈
QFSL and ϵ > 0 there is an N ∈ N and λD ≥ 0 for each N×N {0, 1}-matrix
D such that

∑
D λD = 1 and for j = 1, . . . ,m,

|w(θj)−
∑

D

λDw
D(θj)| < ϵ.

Proof For N > n we have

w(θ(a1, . . . , an)) =
∑

Ψ(a1,...,aN )|=θ(a1,...,an)

w(Ψ(a1, . . . , aN)).

For a state description Φ(a1, . . . , aN) define Φ to be the set (equivalence
class) of all state descriptions that can be obtained from Φ(a1, . . . , aN) by
permuting constants, that is, state descriptions of the form

Ψ(a1, . . . , aN) = Φ(aσ(1), . . . , aσ(N)) (43)

(where σ is a permutation of {1, . . . , N}). Collecting state description from
the same equivalence classes together, we can write

w(θ(a1, . . . , an)) =
∑

Φ

w(Φ(a1, . . . , aN)) ·K(Φ, θ), (44)

where K(Φ, θ) is |Ψ ∈ Φ̄; Ψ(a1, . . . , aN) |= θ(a1, . . . , an)|.

Let K(Φ) be the number of all state descriptions that can be obtained from
Φ by permuting constants. (Note that this is not necessarily N ! because
some permutation may yield the same state descriptions, but every state
description inK(Φ) is obtained from Φ by the same number of permutations.)
Then

K(Φ, θ)

K(Φ)
(45)

is the probability that a random permutation σ yields Ψ that belongs to
K(Φ, θ).
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Let DΦ = (di,j) be the N × N matrix representing Φ. (45) is also the
probability that when (uniformly) randomly picking, without replacement,
h(1), h(2), . . . , h(n) from {1, 2, . . . , N},

∧

i,j≤n

Rdh(i),h(j)(ai, aj) |= θ(a1, . . . , an).

The difference in the probability of picking particular h(1), h(2), . . . , h(n)
from {1, 2, . . . , N} with and without replacement is

n−1∏

i=0

(N − i)−1 −N−n,

if there are no repeats in the h(1), h(2), . . . , h(n) (and hence the difference
is of order N−(n+1)) or N−n if there are repeats. There are Nn n-tuples
h(1), h(2), . . . , h(n) altogether and less than

(
n
2

)
Nn−1 of them are with re-

peats, so - appealing to Problem 6.1(b) - the difference between (45) and
wD(θ) is of order N−1.

For Ψ ∈ Φ, let DΨ be the N × N matrix representing Ψ (note that DΨ

obtains from DΦ by simultaneously permuting rows and columns and that
wDΦ = wDΨ). Let

λDΨ = w(Φ(a1, . . . , aN)) = w(Ψ(a1, . . . , aN)).

Since there are K(Φ) state descriptions Ψ in Φ and just as many matrices
DΨ, (44) yields

w(θ(a1, . . . , an)) =
∑

D

λD · wD(θ)

as required.
"

To illustrate how the above theorem can be useful, we will prove the following
lemma, which is important for the study of analogy in inductive logic.

Lemma 3 For a probability function w on SL satisfying Ex

w(R(a1, a2) |R(a1, a4)) ≥ w(R(a1, a2) |R(a3, a4)).
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Proof Since w satisfies Ex, we have w(R(a1, a4)) = w(R(a3, a4)) so it suffices
to show that

w(R(a1, a2) ∧R(a1, a4)) ≥ w(R(a1, a2) ∧R(a3, a4)).

In view of the previous lemma it suffices to prove it for the functions wD.

Let D = (di,j) be an N ×N {0, 1}-matrix and let

ei = |{j | di,j = 1}| .

Then

wD(R(a1, a2) ∧R(a1, a4)) =

(
N∑

i=1

e2i

)
N−3 =

(
N∑

i=1

(ei/N)2
)(

N∑

i=1

(1/N)2
)
,

wD(R(a1, a2) ∧R(a3, a4)) =

(
N∑

i=1

N∑

j=1

eiej

)
N−4 =

(
N∑

i=1

(ei/N)(1/N)

)2

.

By the Cauchy-Schwarz Inequality
(

N∑

i=1

(ei/N)2
)(

N∑

i=1

(1/N)2
)

≥
(

N∑

i=1

(ei/N)(1/N)

)2

so the result follows.
"

Next we consider some principles that arguably capture some of our intuition
about analogy. L now stands again for a general language.

The Counterpart Principle, CP

Let θ, θ′ ∈ SL be such that θ′ is the result of replacing some constant/relation
symbols in θ by new constant/relation symbols of the same arity not occurring
in θ. Then

w(θ | θ′) ≥ w(θ). (46)

A stronger version, SCP: If θ′′ is the result of replacing the same and possibly
also other constant/relation symbols in θ by new constant/relation symbols
of the same arity not occurring in θ then

w(θ | θ′) ≥ w(θ | θ′′) ≥ w(θ). (47)
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Remarkably, it turns out that the Counterpart principle as well as its stronger
version hold for any probability function which is a member of a consistent
family of probability functions satisfying Ex and Px, in which there is a
probability function for any language. Formally, this requirement is expressed
as

Language Invariance Principle, Li

A probability function w for a language L satisfies Language Invariance if
there is a family of probability functions wL, one on each language L, all
satisfying Px and Ex, and such that wL = w and if L ⊆ L′ then wL is wL′

restricted to SL.

It is easier to show that Li is enough for the basic version of the Counterpart
Principle:

Theorem 8 If w satisfies Li then w satisfies the CP.

Proof Assume that w satisfies Li. Taking the functions of the family to-
gether we can obtain a probability function w+ for the infinite language
L+ which contains infinitely many relation symbols of each arity, extends w
and satisfies Px and Ex. Let θ, θ′ be as in the statement of the principle.
Assume without loss of generality that the constant symbols appearing in
θ are amongst a1, a2, . . . , at, at+1, . . . , at+k, all the relation symbols appear-
ing in θ are amongst R1, R2, . . . , Rs, Rs+1, . . . , Rs+j, and that to form θ′,
at+1, . . . , at+k were replaced by at+k+1, at+k+2, . . . , at+2k, and Rs+1, . . . , Rs+j

were replaced by Rs+j+1, . . . , Rs+2j respectively. So with the obvious notation
we can write

θ = θ(a1, . . . , at, at+1, . . . , at+k, R1, . . . , Rs, Rs+1, . . . , Rs+j),

θ′ = θ(a1, . . . , at, at+k+1, . . . , at+2k, R1, . . . , Rs, Rs+j+1, . . . , Rs+2j).

With this notation let θi+1 be

θ(a1, . . . , at, at+ik+1, . . . , at+(i+1)k, R1, . . . , Rs, Rs+ij+1, . . . , Rs+(i+1)j),

so θ1 = θ, θ2 = θ′. (It is understood that relation symbols in the blocks
Rs+ij+1, . . . , Rs+(i+1)j are of appropriate arities.)

Let L be the unary language with a single unary relation symbol R and define
τ : QFSL → QFSL+ by
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τ(R(ai)) = θi, τ(¬φ) = ¬τ(φ), τ(φ ∧ ψ) = τ(φ) ∧ τ(ψ), etc.

for φ,ψ ∈ QFSL.

Now define v : QFSL → [0, 1] by

v(φ) = w+(τ(φ)).

Then since w+ satisfies (P1-2) (on SL+) so does v (on QFSL). Also since
w+ satisfies Ex and Px, for φ ∈ QFSL, permuting the θi in τ(φ) will leave
w+(τ(φ)) unchanged so permuting the ai in φ will leave v(φ) unchanged.
Hence v satisfies Ex.

By Gaifman’s Theorem, v has an extension to a probability function on SL
satisfying Ex and hence satisfying PIR by Theorem 6. In particular then

v(R(a1) |R(a2)) ≥ v(R(a1)). (48)

But since τ(R(a1)) = θ, τ(R(a2)) = θ′ this amounts to just the Counterpart
Principle

w(θ | θ′) ≥ w(θ).

"

To show that Li is enough also for the stronger version of CP, we can proceed
similarly. It is convenient to introduce the following notation: for a natural
number c, define

c = 2c− 1, c = 2c .

Let

θ = θ(a1, . . . , am, am+1, . . . , am+t, am+k+1, . . . , am+2k,

R1, . . . , Rp, Rp+1, . . . , Rp+s, Rp+j+1, . . . , Rp+2j),

θ′ = θ(a1, . . . , am, am+1, . . . , am+t, am+3k+1, . . . , am+4k,

R1, . . . , Rp, Rp+1, . . . , Rp+s, Rp+3j+1, . . . , Rp+4j),

θ′′ = θ(a1, . . . , am, am+2t+1, . . . , am+3t, am+3k+1, . . . , am+4k,

R1, . . . , Rp, Rp+2s+1, . . . , Rp+3s, Rp+3j+1, . . . , Rp+4j).

(where the relation symbols in the same positions have the same arities).
Assume w satisfies Li , θ, θ′ and θ′′ are in SL and L+, w+ are as above.
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Let θi+1,l+1 stand for

θ(a1, . . . , am, am+it+1, . . . , am+(i+1)t, am+lk+1, . . . , am+(l+1)k,

R1, . . . , Rp, Rp+is+1, . . . , Rp+(i+1)s, Rp+lj+1, . . . , Rp+(l+1)j),

so θ = θ1,2, θ′ = θ1,4 and θ′′ = θ3,4.

Let L be the binary language with a single binary relation symbol R. Define
τ : QFSL → QFSL+ by

τ(R(ai, al)) = θi,l, τ(¬φ) = ¬τ(φ), τ(φ ∧ ψ) = τ(φ) ∧ τ(ψ), etc.

and define v : QFSL → [0, 1] by

v(φ) = w+(τ(φ)).

The v extends to a a probability function on SL which satisfies Ex. By
Lemma 3.

v(R(a1, a2)|R(a1, a4)) ≥ v(R(a1, a2)|R(a3, a4))

so

w(θ1,2 | θ1,4) ≥ w(θ1,2 | θ3,4)

and the result follows.
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Problems 6

1. (a) Let L be a language with a single, unary, predicate Q. Let d⃗ =

⟨d1, d2, . . . , dN⟩ be a {0, 1}-vector. Define wd⃗ for state descriptions by setting

wd⃗(⊤) = 1 and

wd⃗

(
∧

i≤n

Qti(ai)

)

to be the probability of (uniformly) randomly picking, with replacement,
h(1), h(2), . . . , h(n) from {1, 2, . . . , N} such that for each i ≤ n,

dh(i) = ti.

Show that this uniquely determines a probability function on SL satisfying
Ex, and that this function is one of the wx⃗.

(b) Let L be a language with a single, binary, predicate R. Let D = (di,j)
be an N ×N {0, 1}-matrix. Define wD on SL by setting wD(⊤) = 1 and

wD

(
∧

i,j≤n

Rti,j(ai, aj)

)

to be the probability of (uniformly) randomly picking, with replacement,
h(1), h(2), . . . , h(n) from {1, 2, . . . , N} such that for each i, j ≤ n,

dh(i),h(j) = ti,j.

Show that this uniquely determines a probability function on SL satisfying
Ex. Moreover, show that for θ(a1, . . . , an) ∈ QFSL, wD(θ) is the probabil-
ity that when (uniformly) randomly picking, with replacement, h(1), h(2),
. . . , h(n) from {1, 2, . . . , N},

∧

i,j≤n

Rdh(i),h(j)(ai, aj) |= θ(a1, . . . , an).
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Solutions to Problems 6

1. (a) Let

c =
|h ∈ {1, . . . , N} : dh = 1.}|

N
.

For

Θ(a1, . . . , am) =
m∧

i=1

Qti(ai),

wd⃗(Θ(a1, . . . , am)) is the ratio

|⟨h1, . . . , hm⟩ ∈ {1, . . . , N}m : for all i ≤ m, dhi = ti.}|
Nm

≥ 0

=
m∏

i=1

|h ∈ {1, . . . , N} : dh = ti.}|
N

= cm1(1− c)m2

wherem1 = |{i ∈ {1, . . . ,m} : ti = 1}| andm2 = |{i ∈ {1, . . . ,m} : ti = 0}|.
Hence wd⃗ = w⟨c,1−c⟩.

(b) First note the conditions (12) clearly hold since the picking is with re-
placement. Explicitly, for

Θ(a1, . . . , am) =
∧

i,j≤m

Rti,j(ai, aj)

wD(Θ(a1, . . . , am)) is the ratio

|⟨h1, . . . , hm⟩ ∈ {1, . . . , N}m : for all i, j ≤ m, dhi,hj = ti,j.}|
Nm

≥ 0

and
∑

Φ(a1,...,am+1)|=Θ(a1,...,am)

wD(Φ(a1, a2, . . . , am+1))

=
∑

s⃗∈{0,1}2m+1

wD

(
∧

i,j≤m

Rti,j(ai, aj) ∧
m+1∧

i=1

Rsi,m+1(ai, am+1) ∧
m∧

j=1

Rsm+1,j(am+1, aj)

)
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where
s⃗ = ⟨s1,m+1, s2,m+1, . . . , sm+1,m+1, sm+1,1 . . . , sm+1,m⟩.

For a given s⃗ the summand above is

∣∣∣∣∣∣

⎧
⎨

⎩⟨h1, . . . , hm, hm+1⟩ ∈ {1, . . . , N}m+1 : ∀i, j ≤ m, dhi,hj = ti,j &
dhi,hm+1 = si,m+1

dhm+1,hj = sm+1,j

dhm+1,hm+1 = sm+1,m+1

⎫
⎬

⎭

∣∣∣∣∣∣
Nm+1

Since for any given h1, . . . , hm , each hm+1 ∈ {1, . . . , N} adds to precisely
one such summand, the summands add to

wD(Θ(a1, . . . , am))

as required.

Ex follows by Lemma 1 and Gaifman’s Theorem so wD
(∧

i,j≤n R
ti,j(bi, bj)

)

with any other distinct b1, . . . , bn is also the probability of (uniformly) ran-
domly picking, with replacement, h(1), h(2), . . . , h(n) from {1, 2, . . . , N} such
that for each i, j ≤ n,

dh(i),h(j) = ti,j.

Since any θ(b1, . . . , bn) ∈ QFSL is logically equivalent to a disjunction of
state descriptions, wD(θ(b1, . . . , bn)) is the sum of wD(Θ(b1, . . . , bn)) over
those Θ(b1, . . . bn) that logically imply it and hence the probability that when
(uniformly) randomly picking, with replacement, h(1), h(2), . . . , h(n) from
{1, 2, . . . , N}, ∧

i,j≤n

Rdh(i),h(j)(ai, aj) |= θ(a1, . . . , an),

as required.
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