## Two hours

## THE UNIVERSITY OF MANCHESTER

MATHEMATICS 0C1/1C1

16th January 2012

9.45 - 11.45

Answer SIX questions. If you answer more than six questions only the first six appearing in your answer book will be marked.

The use of calculators is not permitted

1 of 0 P.T.O.

- 1. (1) Multiply out the brackets from the following expressions and collect terms.
  - (i)  $(x^2-3)(x+5)$
  - (ii) (a-b+2)(a+b-2)
  - (iii) (2-x)(2-(x-1))

(iv) 
$$x(1-2x)(x-1)$$

[4 marks]

(2) In 1(iv) above what is the term in  $x^2$ ? What is the coefficient of x? What is the constant term?

[3 marks]

(3) Express each of the following in the form  $x^k$  where k is a rational number in its simplest form:

(i) 
$$\frac{x^3}{x^6}$$

(i) 
$$\frac{x^3}{x^6}$$
 (ii)  $x^{-1}\sqrt[4]{x}$  (iii)  $(x^6)^{1/4}$ 

(iii) 
$$(x^6)^{1/4}$$

[3 marks]

- 2. Solve the following equations for x. (Find all the solutions.)
  - (1)  $x^2 3x 10 = 0$
  - (2)  $3x^2 + 4x 2 = x^2 + x 1$
  - (3)  $\frac{x+2}{x-4} = \frac{x-1}{2}$
  - $(4) \quad \frac{2}{x+6} \frac{1}{x+4} = \frac{1}{x}$
  - (5)  $(x^2+1)^2-5(x^2+1)+6=0$

[2 marks for each part]

- **3.** (1) Solve the following equations for x. (Find all solutions.)
  - (i)  $16^x = 4$

(ii) 
$$\log_3\left(\frac{2}{x-3}\right) = -1$$

- (iii)  $\log_2(4^{x-1}) = x + 1$
- (iv)  $x \log_x (2) = \log_x (3)$
- (v)  $\log_x (x^3 + x 11) = 3$

[2 marks for each part]

- **4.** (1) Find the equation of the line  $\mathcal{C}$  passing through the points (-1,2) and (1,6). [2 marks]
- (2) Show that the point (2,8) lies on this line.

[1 mark]

(3) At what point A does the line  $\mathcal{C}$  cross the x axis?

[1 marks]

(4) What is the distance between the points A and (1,6)?

[2 mark]

(5) By considering the triangle formed from the points A, (1,6) and (1,0) find the sine of the angle between the line  $\mathcal{C}$  and the x axis.

[2 marks]

(6) Find the point of intersection of the line C with the line y = 16 - 2x.

[2 marks]

- **5.** Let  $\mathcal{C}$  be the curve  $y = x^2 x 3$  and let  $\mathcal{E}$  be the line y = x 4.
  - (1) Find the point A where  $\mathcal{E}$  intersects  $\mathcal{C}$ .

[2 marks]

(2) Show that  $\mathcal{E}$  is the tangent to  $\mathcal{C}$  at A.

[2 marks]

(3) Find the equation of the normal to  $\mathcal{E}$  at A.

[2 marks]

(4) Find the other point B at which this normal intersects  $\mathcal{C}$ 

[2 marks]

(5) Find the equation of the tangent to  $\mathcal{C}$  at B.

[2 marks]

**6.** The right angled triangle below has hypothenuse of length 6 and cos(A) = 3/4.



## Find:

- (1) b
- $(2) \sin(A)$
- (3) a
- $(4)\tan(A)$
- $(5) \cos(-A)$

- (6)  $\cos(2A)$  (7)  $\sin(2A)$
- (8)  $\cos(A/2)$  (9)  $\cos(3A)$
- (10)  $\sin(A + \pi/4)$

[1 mark for each part]

7. (1) Differentiate the following functions

(i) 
$$y = 2x^9 - 9$$

(ii) 
$$y = \sqrt[4]{x}$$

(iii) 
$$y = e^{2x+1}$$
 [1 mark each]

(2) Find and classify the two stationary points of the function

$$f(x) = 2x^3 + 3x^2 - 12x.$$
 [4 marks]

Sketch the graph of this function and using this graph indicate why the equation

$$2x^3 + 3x^2 - 12x + 8 = 0$$

has only one solution. [3 marks]

8. Differentiate the following functions

(1) 
$$y = (2x+1)^{-2}$$

$$(2) \quad y = \sin^2(x)$$

(3) 
$$y = \frac{1+x}{1-x}$$

(4) 
$$y = \ln(1 + e^x)$$

$$(5) \quad y = \sqrt{\cos(x) + 1}$$

[2 marks each]

4 of 0 P.T.O.