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Tutorial I

Introduction

I have commonly heard philosophers say that Goodman’s GRUE Paradox, [12], [13], spells the
end of Carnap’s Inductive Logic Programme, see [1], [2], [3], [4], [7], [8].1 That may indeed be
so if one intends it to be an applied subject, to be applicable to the problem of our assigning
probabilities in the real world, as I suppose was Carnap’s primary aim. However as Carnap
himself pointed out one can also treat Inductive Logic as a pure subject, just in the way the
same way that mathematics splits into pure and applied mathematics, where one studies logical
or rational principles of probability assignment for their own sake. Indeed Carnap used the
very phrase ‘Pure Inductive Logic’. From this perspective the GRUE Paradox simply isn’t a
paradox.

For much of it’s history the Pure and Applied sides of Inductive Logic have been tangled
together, just as with Pure and Applied Mathematics. I have come to realize however that
my own interest are very firmly located in the Pure, and in that sense I see it as part of
Mathematical Logic, more specifically a branch of Uncertain Reasoning. That’s not to say (I
hope!) that it is of no interest to anyone except a pure mathematician. The topic is inspired
by issues that concern ‘applied inductive logicians’. The arguably rational principles that we
formulate and study derive from our perceptions of the real world and I would hope that
the conclusions we draw from them by the agency of mathematics might still say something
of wider interest than just being purely technical mathematical theorems. Not that I would
want at all to say that A,B and C are clearly rational and therefore you should believe them.
Instead the most I would wish to point out is that D is a mathematical consequence of A,B,C
so if you accept A,B,C then perforce you should accept D.

My aim in the first of these two tutorials is to describe a result, de Finetti’s Representation
Theorem, which has really been the cornerstone of Pure Inductive Logic up to the millenium.
In the second tutorial I shall describe two principles, Language Invariance and Spectrum
Exchangeability, which seem to me to be the major players in where Pure Inductive Logic,
PIL for short, is right now. Before we can do any of that however we need to set the scene,
explain what the problem is.

Context and Notation

For the mathematical setting we need to make the formalism completely clear. Whilst there are
various possible choices here the language which seems best for our study, and corresponds to
most of the literature, including Carnap’s, is where we work with a first order language L with
relation symbols R1, R2, . . . , Rq, say of arities r1, r2, . . . , rq respectively, and constants an for
n ∈ N+ = {1, 2, 3, . . .}, and no function symbols nor (in general) equality. The intention here
is that the ai name all the individuals in some population though there is no prior assumption
that they necessarily name different individuals. Let SL denote the set of first order sentences
of this language L and QFSL the quantifier free sentences of this language.

1And also W.E.Johnson’s earlier [17].
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Let T denote the set of structures for L with universe {a1, a2, a3, . . .}, with the obvious inter-
pretation of ai as ai itself.

To capture the underlying problem that PIL aims to address imagine an agent who inhabits
some structure M ∈ T but knows nothing about what is true in M . Then the problem is,

Q: In this situation of zero knowledge, logically, or rationally, what belief should
our agent give to a sentence θ ∈ SL being true in M?

There are several terms in this question which need explaining. Firstly ‘zero knowledge’ means
that the agent has no intended interpretation of the ai nor the Rj. To mathematicians this
seems a perfectly easy idea to accept, we already do it effortlessly when proving results about,
say, an arbitrary group. In these cases all you can assume is the axioms and you are not
permitted to bring in new facts because they happen to hold in some particular group you
have in mind. Unfortunately outside of Mathematics this sometimes seems to be a particularly
difficult idea to embrace and much confusion has found its way into the folklore as a result.

In a way this is at the heart of the difference between the ‘Pure Inductive Logic’ proposed here
as Mathematics and the ‘Applied Inductive Logic’ of Philosophy. For many philosophers would
(I think) argue that in this latter the language is intended to carry with it an interpretation,
that without it one is doing Pure Mathematics not Philosophy. It is the reason why GRUE
is a paradox in Philosophy and simply an invalid argument in Mathematics. Nevertheless,
mathematicians or not, we all need to be on our guard when it comes to allowing interpretations
to slip in subconsciously. Carnap himself was very well aware of this division, and the dangers
presented by ignoring it, and spent some effort explaining it in [5]. Indeed in that paper he
describes Inductive Logic, IL, as the study of just such a zero knowledge agent, a ‘robot’ as he
termed it.

A second unexplained term is ‘logical’ and its synonym (as far as this text is concerned)
‘rational’. In this case, as already indicated, we shall offer no definition, it is to be taken
as intuitive, something we recognize when we see it without actually being able to give it a
definition. This will not be a great problem for our purpose is to propose and mathematically
investigate principles for which it is enough that we may simply entertain the idea that they are
logical or rational. The situation parallels that of the intuitive notion of an ‘effective process’
in recursion theory, and similarly we may hope that our investigations will ultimately lead to
a clearer understanding.

The third unexplained term above is ‘belief’. In PIL we identify belief, or more precisely
degree of belief, with (subjective) probability. To my mind the Dutch Book Argument provides
a strong justification for this identification. This of course now requires us to make precise
what we mean by ‘probability’, or more precisely a ‘probability function’:

Probability Functions

A function w : SL→ [0, 1] is a probability function on SL if for all θ, φ,∃xψ(x) ∈ SL,

(P1) � θ ⇒ w(θ) = 1.

(P2) θ � ¬φ ⇒ w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limn→∞w(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)).
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Condition (P3) is often referred to as Gaifman’s Condition, see [9], and is a special addition to
the conventional conditions (P1), (P2) appropriate to this context. It intends to capture the
idea that the a1, a2, a3, . . . exhaust the universe.

All the standard, simple, properties you’d expect of a probability function follow from these
(P1-3):

Proposition 1 Let w be a probability function on SL. Then for θ, φ ∈ SL,

(a) w(¬θ) = 1− w(θ).

(b) � ¬θ ⇒ w(θ) = 0.

(c) θ � φ ⇒ w(θ) ≤ w(φ).

(d) θ ≡ φ ⇒ w(θ) = w(φ).

(e) w(θ ∨ φ) = w(θ) + w(φ)− w(θ ∧ φ).

Proofs may be found in [26].

On the face of it it might appear that because of the great diversity of sentences in SL
probability functions would be very complicated objects and not easily described. In fact this
is not the case as we shall now explain. The first step in this direction is the following theorem
of Gaifman, [9]:2

Theorem 2 Suppose that w : QFSL→ [0, 1] satisfies (P1) and (P2) for θ, φ ∈ QFSL. Then
w has a unique extension to a probability function on SL satisfying (P1),(P2),(P3) for any
θ, φ,∃xψ(x) ∈ SL. SL.

In view of this theorem then the ‘game’ of picking a rational probability function is really
being played at the level of quantifier free sentences. In fact, it’s even simpler that that:

State Descriptions

As usual let L be our default language with relation symbolsR1, R2, . . . , Rq of arities r1, r2, . . . , rq
respectively. For distinct constants ai1 , ai2 , . . . , aim coming from a1, a2, . . ., a State Description
for ai1 , ai2 , . . . , aim is a sentence of L of the form

q∧
k=1

∧
c1,c2,...,crk

Rεk
k (c1, c2, . . . , crk)

where the c1, c2, . . . , crk range over all (not necessarily distinct) choices from ai1 , ai2 , . . . , aim ,
the εk ∈ {0, 1} and Rεk

k stands for Rk if εk = 1 and ¬Rk if εk = 0.

In other words, a state description for ai1 , ai2 , . . . , aim tells us exactly which of theRk(c1, c2, . . . , crk)
hold and which do not hold for Rk a relation symbol from our language and any arguments
c1, c2, . . . , crk from ai1 , ai2 , . . . , aim . Hence any two distinct3 (inequivalent) state descriptions
for ai1 , ai2 , . . . , aim are exclusive in the sense that their conjunction is inconsistent. We allow

2For a proof in the notation of these tutorials see Theorem 7 of [26].
3Following standard practice we shall identify two state descriptions if they are the same up to the ordering

of their conjuncts. Since throughout we will only really be concerned with sentences up to logical equivalence
this abuse should not cause any distress.
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here the possibility that m = 0 in which case the sole state description for these constants is
a tautology, for which we use the symbol >.

As an example, if L had just the binary relation symbol R and the unary relation (or predicate)
symbol P then

P (a1) ∧ ¬P (a2) ∧ ¬R(a1, a1) ∧R(a1, a2) ∧R(a2, a1) ∧R(a2, a2)

would be a state description for a1, a2.

We shall use upper case Θ,Φ,Ψ etc. for state descriptions. By using Theorem 2 and the
Disjunctive Normal Form Theorem it is straightforward to see that:

Proposition 3 A probability function is determined by its values on the state descriptions.

So, actually, the ‘game’ is being played here at the level of state descriptions.

Returning to our central question Q, it now amounts to:

Q: In this situation of zero knowledge, logically, or rationally, what probability
function w : SL → [0, 1] should our agent adopt when w(θ) is to represent the
agent’s probability that a sentence θ ∈ SL is true in the ambient structure M?

So how is the agent supposed to make this choice? As far as PIL is concerned, by the application
of:

Rational Principles

That is, the agent formulates rational or logical (I’m using the two words synonymously)
principles or rules of probability assignment and then adopts a probability function which
satisfies those principles. One might object that one first needs to know what ‘rational’ means
in this context and that appears to be a major, if not downright impossible, task.

However as far as PIL is concerned that isn’t actually the case. As already mentioned we have
some sort of intuitive ideas of what it means to behave rationally, or more especially perhaps
we recognize irrational behavior, and it is enough for PIL that we try to capture these feelings
as formal principles and then then go on to investigate their consequences and relationships
to other such putatively rational principles. Thus at this stage of its development I see PIL
as an experiment where we are free to investigate any principles provided they bear some sort
of relevance to the situation, i.e. could be argued to encapsulate some feature of rationality.
For this we don’t need to know what we mean by rational, just as those mathematicians who
first tried to formulate the idea of an ‘effective process’ did not actually have to know what
this was before they started – the notion crystalized out of their investigations. And possibly
a notion(s) of ‘rational’ just might crystalize out of this investigation.

In a way I see this as similar to the situation in Set Theory where we propose axioms based
on some intuitions we have about the ‘universe of sets’, some of which are almost universally
accepted whilst others others are highly contentious, and then investigate their consequences.
Sometimes these axioms are inconsistent with each other but nevertheless the feeling is that by
investigating these choices we are getting closer to understanding and perhaps even closing in
on the set theoretic universe. So it is too with PIL, we again find that intuitions can conflict.
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As far as such ‘rational principles’ (from now on I will drop any quotes) are concerned there
appear to date to be three main sources from which they spring: Symmetry, Relevance and
Irrelevance. Of these principles based on symmetry, the requirement that the adopted proba-
bility function w should preserve existing symmetries, seems to be the most convincing, and
easiest to formulate. We start with one such that is so widely accepted that we will henceforth
assume it throughout without further explicit mention.

The Constant Exchangeability Principle, Ex4

For φ(a1, a2, . . . , am) ∈ SL5 and (distinct) i1, i2, . . . , im ∈ N+,

w(φ(a1, a2, . . . , am)) = w(φ(ai1 , ai2 , . . . , aim)).

The rational justification here is that the agent has no knowledge about any of the ai so it
would be irrational to treat them differently when assigning probabilities.6,

In an exactly similar way we could justify the Principles of Predicate Exchangeability (where
we require w to be fixed when we transpose relation symbols of the same arity) and Strong
Negation where we replace a relation symbol throughout by its negation.

Now that we have introduced this Constant Exchangeability Principle, Ex, we would like to
investigate what it entails, what follows from the assumption that w satisfies Ex. Often a
major step in PIL after one has formulated a principle is to prove a representation theorem
for the probability functions satisfying that principle by showing that they must look like a
combination of certain ‘simple building block functions’. There are such results for probability
functions satisfying Ex, the first of these, and historically the most important, being the so
call de Finetti’s Representation Theorem in the case where the language L is unary.

Unary Inductive Logic

In the initial investigations of Johnson and Carnap (and indeed almost exclusively up to the
millennium) the language of Inductive Logic was taken to be unary. That is, in the notation
we are adopting here the relation symbols R1, R2, . . . , Rq of the language L all had arity 1,
and so would more commonly be referred to in Philosophy as ‘predicate’ symbols. Assume for
the present that L is the unary language as above.

Now a state description for ai1 , ai2 , . . . , aim is of the form

m∧
j=1

q∧
k=1

R
εjk
k (aij),

equivalently of the form
m∧
j=1

αhj(aij), (1)

where the αhj(x) (1 ≤ hj ≤ 2q) are atoms of L, that is come from amongst the 2q formulae of
the form

Rε1
1 (x) ∧Rε2

2 (x) ∧ . . . ,∧Rεq
q (x),

4Johnson’s Permutation Postulate and Carnap’s Axiom of Symmetry.
5The convention is that when a sentence φ is written in this form it is assumed (unless otherwise stated)

that the displayed constants are distinct and include all the constants actually occurring in φ.
6The agent is not supposed to ’know’ that a1 comes before a2 which comes before . . . in our list.

6



where the ε1, ε2, . . . , εq ∈ {0, 1}. [There are 2q of them because there are two choices of εi for
i = 1, 2, . . . , q.]

For example if q = 3 the conjunction of

R1(a1) R1(a2) ¬R1(a3) R1(a4) ¬R1(a5) ¬R1(a6) ¬R1(a7)

R2(a1) R2(a2) ¬R2(a3) R2(a4) ¬R2(a5) ¬R2(a6) R2(a7)

¬R3(a1) ¬R3(a2) ¬R3(a3) ¬R3(a4) R3(a5) R3(a6) ¬R3(a7)

is a state description for a1, a2, . . . , a7, it tells us everything there is to know about a1, a2, . . . , a7.
Indeed in this simple unary language the first column, equivalently the atom R1(x) ∧R2(x) ∧
¬R3(x) which a1 satisfies, already tells us everything there is to know about a1 etc..

A useful way of thinking about atoms is as colours in a situation where the ai are balls and
that’s their only distinguishing feature. Thus to know the colour of a ball is to know everything
there is to know about that ball.

Now let 0 ≤ x1, x2, . . . , x2q ≤ 1 with
∑2q

i=1 xi = 1 and define w~x, where ~x = 〈x1, x2, . . . , x2q〉,
on the state description (1) by

w~x

(
m∧
j=1

αhj(aij)

)
=

m∏
j=1

xhj ,

equivalently
w~x(αh1(ai1) ∧ αh2(ai2) ∧ . . . ∧ αhm(aim)) = xh1xh2 . . . xhm . (2)

It is straightforward to show that w~x, defined as here on state descriptions, in fact extends to
a probability function on SL. Indeed we can see already from (2) that w~x looks like it is acting
as follows: Given aij it is picking an atom for aij to satisfy, the probability of picking αhj being
xhj . Thus the probability of (independently) picking αh1 , αh2 , . . . , αhm for ai1 , ai2 . . . , aim to
satisfy is xh1xh2 . . . xhm .

Notice that these w~x satisfy Ex on state descriptions, since the right hand side of (2) does not
depend on the actual (distinct) numbers i1, i2, . . . , im and in fact tracking through the proof
of Proposition 3 shows that this is enough to ensure that w~x satisfies Ex on all sentences. It
turns out that these w~x are precisely the ‘simple building blocks’ referred to above from which
to generate all probability functions satisfying Ex.

de Finetti’s Representation Theorem

The following theorem due to Bruno de Finetti may be found in [6] (for a proof of this result
in the notation being used here see Theorem 10 of [26]).
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de Finetti’s Representation Theorem 4 A probability function w on a unary language L
satisfies Ex just if it is a mixture of the w~x.

More precisely, just if

w =

∫
w~x dµ(~x)

where µ is a countably additive measure on the Borel subsets of

{〈x1, x2, . . . , x2q〉 | 0 ≤ x1, x2, . . . , x2q ,
∑
i

xi = 1}. (3)

On the face of it this theorem may seem to only be of interest to mathematicians, it doesn’t
seem to be saying much about induction or rationality which would be of interest to a philoso-
pher. However it yields consequences and observations which surely are of interest in this
regard. The mathematical power of this theorem lies in the fact that it often enables us to
translate questions about the general probability function w on the left hand side of (3) into
questions about the very simple probability functions w~x on the right hand side.

For example we immediately have that for real numbers b, c,

b2x2
1 + c2x2

2 ≥ 2bcx1x2

since (bx1 + cx2)2 ≥ 0. Hence

b2w~x(α1(a1) ∧ α1(a2)) + c2w~x(α2(a1) ∧ α2(a2)) ≥ 2bcw~x(α1(a1) ∧ α2(a2))

and from (3), for w satisfying Ex,

b2w(α1(a1) ∧ α1(a2)) + c2w(α2(a1) ∧ α2(a2)) ≥ 2bcw(α1(a1) ∧ α2(a2)).

Thus at least one of

b2w(α1(a1) ∧ α1(a2)) ≥ bcw(α1(a1) ∧ α2(a2)),

c2w(α2(a1) ∧ α2(a2)) ≥ bcw(α1(a1) ∧ α2(a2)),

must hold. Putting b = c = 1 and using Ex to permute constants this gives that at least one
of

w(α1(a2) | α1(a1)) ≥ w(α2(a2) | α1(a1)),

w(α2(a2) | α2(a1)) ≥ w(α1(a2) | α2(a1)),

must hold. Similarly putting b = w(α2(a1)), c = w(α1(a1)) it gives that at least one of

w(α1(a2) | α1(a1)) ≥ w(α1(a2) | α2(a1)),

w(α2(a2) | α2(a1)) ≥ w(α2(a2) | α1(a1)),

must hold. In other words we cannot have α2(a1) being stronger evidence for α1(a2) than
α1(a1) is and at the same time have α1(a1) being stronger evidence for α2(a2) than α2(a1) is
(though it is easy to see that we can have both separately).

Indeed by a just such a simple proof Humburg [15] showed the following result, originally due
to Gaifman [10]:7

7See [26] for a proof in the current notation.
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Theorem 5 Ex implies the:

Principle of Instantial Relevance, PIR
For θ(a1, a2, . . . , am) ∈ SL,

w(αi(am+2) | αi(am+1) ∧ θ(a1, a2, . . . , am)) ≥ w(αi(am+1) | θ(a1, a2, . . . , am)).

From a philosopher’s point of view this is an interesting result (or at least it should be!) because
it confirms one’s intuition re induction that the more often you’ve seen something in the past
the more probable you should expect it to be in the future. So this turns out to be simply a
consequence of Ex. Whilst one might claim, in accord with Hume [16], that Ex is really the
assumption of the uniformity of nature and in that sense can be equated with induction8 what
this argument does show is that if you think Ex rational then you should think PIR rational.
Certainly this result can be seen as casting a favorable light on Carnap’s Programme.

A further observation on de Finetti’s Theorem concerns the functions w~x: They can be char-
acterized by a certain Irrelevance Principle:

Proposition 6 The probability function w satisfying Ex is of the form w~x for some ~x just if
it satisfies the:

Constant Irrelevance Principle, IP
For θ(a1, a2, . . . , am), φ(am+1, am+2, . . . , am+n) ∈ SL,

w(θ(a1, a2, . . . , am) ∧ φ(am+1, am+2, . . . , am+n))

= w(θ(a1, a2, . . . , am)) · w(φ(am+1, am+2, . . . , am+n)).

Again this is a principle with some rational content and although, perhaps, on further consider-
ation, not particularly to be recommended. It is interesting in that it says that IP characterizes
the extreme probability functions satisfying Ex – i.e. the only probability functions satisfying
IP are the w~x and these are ‘extreme’ solutions to Ex in the sense that the only mixture of
functions satisfying Ex which gives you w~x is the trivial mixture containing that same w~x alone.

What we have seen then here is that the symmetry principle Ex has led us to the relevance
principle PIR and the irrelevance principle IP. It turns out that this is far from an isolated
phenomenon and suggests then that one might be able to explain the perceived rationality of
relevance and irrelevance principles in terms of the rationality of (obeying) symmetry.9

As a final observation here concerning de Finetti’s Representation Theorem we might try to
argue that a case could be made for w as in (3) to be rational if the measure µ was rational.
In other words for w to acquire rationality through µ. An immediate objection here could
be that saying what it means for µ to be rational is even more of a puzzle than it was for
w. One suggestion however that one might come up with is that µ should be as uniform, as
unassuming, as possible, after all whatever reason could the agent have for thinking otherwise?
(if indeed the agent ever thinks about de Finetti priors!) Such considerations suggest that we
should we should take µ to be simply the standard normalized Lebesgue measure.

8The result does not go the other way however, see [31, footnote 6] for an example of a probability function
satisfying PIR but not Ex.

9As we mentioned above IP is not perhaps a particularly attractive Irrelevance Principle. However we
shall later see another Irrelevance Principle, WIP, which arises from a representation theorem in an analogous
fashion and seems somewhat more acceptable.
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If we do that then w comes out to be the probability function cL2q from Carnap’s Continuum
of Inductive Methods which for this language L with q unary predicates is characterized by:

cL2q(αj(an+1) |
n∧
i=1

αhi(ai)) =
mj + 1

n+ 2q

where mj is the number of times that the atom αj occurs amongst

αh1 , αh2 , . . . , αhn .

We shall have more to say about cL2q in the next tutorial.
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Tutorial II

Polyadic Inductive Logic

As previously mentioned until the turn of the millennium ‘Inductive Logic’, with very few
exceptions (for example [9], [11], [30], [21] and [14]) meant ‘Unary Inductive Logic’.

Of course there was an awareness of this further challenge, Carnap [1, pages 123-4] and Kemeny
[18], [19] both made this point. There were at least three reasons why the move to the polyadic
was so delayed. The first is that simple, everyday examples of induction with non-unary
relations are rather scarce. However they do exist and we do seem to have some intuitions
about them. For example suppose that you are planting an orchard and you read that apples
of variety A are good pollinators and apples of variety B are readily pollinated. Then you
might expect that if you plant an A apple next to a B apple you will be rewarded with an
abundant harvest, at least from the latter tree. In this case one might conclude that you
had applied some sort of polyadic induction to reach this conclusion, and that maybe it has a
logical structure worthy of further investigation.

A second reason for a certain reluctance to venture into the polyadic is that the notation
and mathematical complication increases significantly, at least when compared with the unary
case. The key reason for this is that a state description, for a1, a2, . . . , an say, no longer tells
us everything there is to know about these constants in the way it did in the unary situation.
For example for a binary relation symbol R of L it gives no information about whether or not
R(a1, an+1) holds. Thus we can never really ‘nail down’ the constants as we could before.

Finally, a third reason, we would suggest, is the relative lack of intuition when it comes to
forming beliefs about polyadic relations. To take an example suppose you are told that

R(a1, a2) ∧R(a2, a1) ∧ ¬R(a1, a3).

In this case which of R(a3, a1),¬R(a3, a1) would you think the more likely? The first of these
two options seems to be supported by the fact that we know of two positive occurrences of
R (namely R(a1, a2), R(a2, a1)) and only one occurrence of ¬R (namely ¬R(a1, a3)). On the
other hand the fact that R holds of both 〈a1, a2〉 and of 〈a2, a1〉 suggests maybe that R is
somewhat symmetric in its two arguments and hence, by analogy, that the ¬R(a1, a3) should
provide evidence for ¬R(a3, a1).

This lack of intuition extends too to the problem of proposing rational principles in the polyadic
case. We have Ex of course and also Predicate Exchangeability and Strong Negation but
beyond that things look less clear. In fact one such principle can be obtained10 by generalizing a
principle which both Johnson and Carnap11 espoused. To motive this recall a state description
Θ(a1, a2, . . . , a7) which we looked at in the unary case:

R1(a1) R1(a2) ¬R1(a3) R1(a4) ¬R1(a5) ¬R1(a6) ¬R1(a7)

R2(a1) R2(a2) ¬R2(a3) R2(a4) ¬R2(a5) ¬R2(a6) R2(a7)

¬R3(a1) ¬R3(a2) ¬R3(a3) ¬R3(a4) R3(a5) R3(a6) ¬R3(a7)

10Though historically it arose from a different path.
11It amounts to Carnap’s Attribute Symmetry in the present context.
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Say ai, aj are indistinguishable w.r.t. this stated description if it is consistent with Θ that ai, aj
are actually equal, i.e.

Θ(a1, a2, . . . , a7) ∧ ai = aj

is consistent in the Predicate Calculus with equality.

So here a1, a2, a4 are indistinguishable, as are a5, a6, but a3, a7 are both distinguishable from all
the other ai. Note the thinking of these atoms as defining the colour of a constant, ai, aj being
indistinguishable just says they have the same colour. Clearly indistinguishability with respect
to a state description is an equivalence relation. In this specific case then the equivalence classes
are

{a1, a2, a4}, {a5, a6}, {a3}, {a7}

and according to the colour analogy the equivalence classes are just the sets of ai with the
same colour.

Now define the Spectrum of a State Description to be the multiset of sizes of these equivalence
classes.

So for Θ(a1, a2, . . . , a7) as above its spectrum is {3, 2, 1, 1}.

Spectrum Exchangeability

The principle alluded to above that both Johnson and Carnap adopted in their situation of
unary languages we call:

Atom Exchangeability, Ax

For a state description Θ the probability w(Θ) should only depend on the spectrum of Θ.

Ax is really a symmetry principle. If we think of the atoms as corresponding to colours it say
that the probability we assign to a state description Θ should be invariant under a permutation,
or renaming of the colours. In short that all that matters about a colour is that it is different
from other colours, not whether it is called red, or blue, or green, etc..12

Atom Exchangeability, what Carnap called ‘Attribute Symmetry’, is now quite well studied and
accepted in Unary Inductive Logic. Furthermore it extends smoothly to polyadic languages.

12Ax is a consequence of a stronger principle that Johnson and Carnap both championed:

Johnson’s Sufficientness Principle

w(αj(an+1) |
n∧

i=1

αhi
(ai))

depends only on n and the number of times that the atom αj occurs amongst

αh1
, αh2

, . . . , αhn
.

Expressed in terms of colours then it says that having seen the colours of a1, a2, . . . , an the probability that
an+1 will be green depends only on the number, n, of previous ai seen, and the number of those that were green
– the distribution of colours amongst the non-green ai is of no consequence. This seems reasonable if we think
of these colours being determined by picking balls out of an urn (with replacement). However is is debateable
whether our agent will feel it a reasonable assumption that his/her ambient structure was constructed in this
fashion.

12



For taking L henceforth to be polyadic we define the indistinguishability of aik , air w.r.t a state
description Θ(ai1 , ai2 , . . . , aim) as before, i.e. just if

Θ(ai1 , ai2 , . . . , aim) ∧ aik = air

is consistent (in the Predicate Calculus with Equality). So, for example, taking the language
L to have just a single binary relation symbol R, with respect to the state description (which
is the conjunction of)

R(a1, a1) ¬R(a1, a2) R(a1, a3) R(a1, a4)

R(a2, a1) ¬R(a2, a2) R(a2, a3) ¬R(a2, a4)

R(a3, a1) ¬R(a3, a2) R(a3, a3) R(a3, a4)

R(a4, a1) R(a4, a2) R(a4, a3) R(a4, a4)

the ‘indistinguishability’ equivalence classes are

{a1, a3}, {a2}, {a4}

and the spectrum is {2, 1, 1}
In the (possibly) polyadic setting we can now propose the following rational principle:

Spectrum Exchangeability, Sx

For a state description Θ the probability w(Θ) only depends on the spectrum of Θ. If state
descriptions Θ,Φ have the same spectrum then w(Θ) = w(Φ).

So for example, with L just having a single binary relation symbol the conjunctions of

R(a1, a1) ¬R(a1, a2) R(a1, a3)

R(a2, a1) ¬R(a2, a2) R(a2, a3)

R(a3, a1) ¬R(a3, a2) R(a3, a3)

and of
¬R(a1, a1) ¬R(a1, a2) R(a1, a3)

¬R(a2, a1) ¬R(a2, a2) R(a2, a3)

R(a3, a1) R(a3, a2) R(a3, a3)

get the same probability as both have spectrum {2, 1}.
Notice a difference here from the unary case. In the unary if a1, a2 are indistinguishable with
respect to the state description Θ(a1, a2, a3) they will still be indistinguishable with respect to
Φ(a1, a2, a3, a4) for any state description Φ extending Θ. In other words if a1, a2 get the same
colour then thereafter they have the same colour for all eternity. But for a not purely unary
language that is not necessarily the case, indistinguishables can be distinguished by ‘later’
constants. For example the state description

¬R(a1, a1) ¬R(a1, a2) R(a1, a3) R(a1, a4)

¬R(a2, a1) ¬R(a2, a2) R(a2, a3) ¬R(a2, a4)

R(a3, a1) R(a3, a2) R(a3, a3) ¬R(a3, a4)

R(a4, a1) R(a4, a2) R(a4, a3) R(a4, a4)

13



extends the one immediately above it but has spectrum {1, 1, 1, 1}, a4 has distinguished a1

and a2.13

Sx has a number of pleasing consequences, for example Px, SN, simply because the permuta-
tions they specify when applied to a state description do not change its spectrum. However
before going on to explain some of the deeper consequences of Sx we will consider an alto-
gether different sort of principle, more a ‘meta-principle’, which appears to be both natural
and desirable within Inductive Logic as a whole.

Language Invariance

The enlargement of PIL to polyadic languages raises the issue of why we should fix, and work
in, a particular language L in the first place. After all our agent could always imagine that
the language contained relation symbols in addition to those in L. Moreover would not the
agent then wish to adopt a probability function for that larger language which satisfied the
same principle that s/he would have considered rational for L alone? Surely yes!

But then can this wish of the agent actually be realized? The problem is that the agent might
follow his/her rational principles and pick the probability functions w on L and w+ on the
(imagined) extended language L+ and find that the restriction of w+ to SL, denoted w+�SL,
is not the same as w. In other words simply by imagining being rational in L+ the agent would
have discredited w. Indeed looked at from this perspective w might seem a particularly bad
choice if there was no extension at all of w to L+ which satisfied the agent’s favored rational
principles.14

To make this more concrete suppose the agent felt Sx (+ Ex) was the (only) rational require-
ment that s/he was obliged to impose on his/her choice w. Then it might be that the agent
made such a choice only to realize that there was no way to extend this probability function
to a larger language and still maintain having Sx.

In fact this can happen for some bad choices of w, but fortunately it needn’t happen, there
will be choices of probability function for which there are no such dead ends. These are the
ones which satisfy:

Language Invariance with Sx, Li+Sx

A probability function w satisfies Language Invariance with Sx if there is a family of probability
functions wL, one on each language L, containing w (so w = wL) such that each member of this
family satisfies Sx and whenever language L1,L2 are such that L1 ⊆ L2 then wL2�SL1 = wL1 .

It turns out that Li+Sx implies most (maybe even all) the of the desirable properties so far
proposed for a rational polyadic probability function. Before mentioning some these however
it would seem a good idea to give an example of a probability function satisfying Li+Sx, we’ve

13This observation may raise the unpleasant worry in ones mind that maybe Sx is not even consistent, or
is at best trivial! For maybe the two state descriptions for a1, a2, a3 above with the same spectra could have
different multiplicities of spectra amongst their extensions to state descriptions for a1, a2, a3, a4. Fortunately
this does not happen though the proof of that seems not entirely trivial, see [25], [22].

14There is just such a fault with the choice of the probability function cL2q on a unary language L with q
predicates. This was justified in terms of the measure µ being standard Lebesgue measure. If we apply exactly
the same reasoning to the language L+ formed by adding an extra unary predicate to L we obtain cL

+

2q+1 . But
if we restrict this probability function to SL we do not get back our ‘favored choice’ cL2q for that language!
Seems to me this seriously dents the so called ‘rationality of Lebesgue measure’.
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got this far without actually confirming that there’s any probability function satisfying Li+Sx,
equivalently confirming that Li+Sx is even consistent!

The up̄,L

Let p̄ be the sequence
p0, p1, p2, p3, . . .

of real numbers such that

p1 ≥ p2 ≥ p3 ≥ . . . ≥ 0 and
∞∑
i=0

pi = 1.

We think of the subscripts here 0, 1, 2, 3, . . . as colours, with 0 being black, and pi as the
probability of picking colour i (with replacement).

Now consider a state description Θ(ai1 , ai2 , . . . , ain) and a sequence of colours (not necessarily
distinct) c1, c2, . . . , cn (so these are really just natural numbers). We say that Θ(ai1 , ai2 , . . . , ain)
is consistent with this sequence if whenever cj = ck 6= 0 then aij , aik are indistinguishable with
respect to Θ.

To take a specific example here suppose that the language has a single binary relation symbol
R,

p0 = 1/4, p1 = 2/3, p2 = 1/12, p3 = p4 = . . . = 0,

and Θ(a1, a2, a3) is the conjunction of

¬R(a1, a1) ¬R(a1, a2) R(a1, a3)

¬R(a2, a1) ¬R(a2, a2) R(a2, a3)

R(a3, a1) R(a3, a2) R(a3, a3)

so the indistinguishability equivalence classes are {a1, a2} and {a3}. Then Θ(a1, a2, a3) is
consistent with the sequence of colours 2, 2, 1, and with 0, 2, 1, and with 0, 0, 0, and with
1, 2, 0, but not with 1, 2, 1, nor with 0, 1, 1.

Now define up̄,L(Θ(ai1 , ai2 , . . . , ain)) as follows:

• Pick a sequence of colours c1, c2, . . . , cn according to the probabilities p0, p1, p2, . . ., so the
probability of picking c1, c2, . . . , cn is

pc1 × pc2 × . . .× pcn .

• Randomly (i.e. according to the uniform distribution) pick a state description Φ(ai1 , ai2 , . . . , ain)
consistent with c1, c2, . . . , cn.

• up̄,L(Θ(ai1 , ai2 , . . . , ain)) is the probability that Θ = Φ.

Unfortunately even calculating up̄,L(Θ) for the specific example above is horribly complicated,
but here goes:

Initially there are 27 choices for c1, c2, c3. Of these Θ is not consistent with 1, 0, 1; 1, 1, 1;
1, 2, 1; 2, 0, 2; 2, 1, 2; 2, 2, 2; 0, 1, 1; 2, 1, 1 so none of these could possibly yield a Φ which
equalled Θ.

In the case of the sequence of colours being one of
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0, 0, 0; 1, 0, 0; 2, 0, 0; 0, 1, 0; 0, 2, 0; 0, 0, 1; 0, 0, 2;
1, 0, 2; 2, 0, 1; 0, 1, 2; 0, 2, 1; 1, 2, 0; 2, 1, 0

any of the 29 possible state descriptions for a1, a2, a3 are consistent with the sequence of colours,
so the probability in each case of picking Θ is 2−9. The probability of picking one of these
sequences of colours is

(1/4)3 + 2× (2/3)× (1/4)2 + 2× (1/12)× (1/4)2 + 6× (1/4)× (2/3)× (1/12).

In the cases of 1, 1, 2; 2, 2, 1; 1, 1, 0; 2, 2, 0 (chosen with probabilities (2/3)2×(1/12), (1/12)2×
(2/3), (2/3)2×(1/4) and (1/12)2×(1/4) respectively) there are 24 state descriptions consistent
with them (including Θ) so the probability of picking Θ is 2−4 in each case.

So up̄,L(Θ(a1, a2, a3)) is

2−9[(1/4)3 + 2× (2/3)× (1/4)2 + 2× (1/12)× (1/4)2 + 6× (1/4)× (2/3)× (1/12)]

+2−4[(2/3)2 × (1/12) + (1/12)2 × (2/3) + (2/3)2 × (1/4) + (1/12)2 × (1/4)]

which equals 8707
98304

(I think!).

Despite their painful birth one can, in time, make friends with the up̄,L and they turn out to
be the central building blocks in the study of Sx, as the next section indicates.

Paradise Gained

Theorem 7 The up̄,L satisfy Ex and Li+Sx.

For Language Invariance notice that this definition of the up̄,L is completely uniform in the
‘parameter’ L. A little work shows that if we fix the p̄ but vary the language then these up̄,L,
as L ranges over languages, form a Language Invariance family (containing of course our up̄,L).
In other words, for L1 ⊆ L2, up̄,L2 restricted to SL1 is just up̄,L1 .

To see that up̄,L (and hence all members of the family of up̄,L) satisfies Sx is quite easy: The
definition of up̄,L(Θ) actually only depends only on the spectrum of Θ, so will the the same for
any two state descriptions with the same spectrum. Similarly with Ex, the value of up̄,L(Θ)
does not depend on the actual constants involved (– except that we do need to check that this
definition does not over specify up̄,L).

Now for the pay-off, these up̄,L act a building blocks in the polyadic case for Li+Sx (+Ex) just
as the w~x did for Ex in the unary case:

Theorem 8 Any probability function w on L satisfying Li+Sx (+Ex) is a mixture of the up̄,L,
i.e.

w =

∫
up̄,L dµ(p̄).

Using this we can now show:

Theorem 9 The up̄,L are precisely the probability functions w on L satisfying Li+Sx which
also satisfy the:

Weak Irrelevance Principle, WIP
If θ, φ ∈ SL have no constant nor relation symbols in common then

w(θ ∧ φ) = w(θ) · w(φ).
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Again then, as with the w~x and Ex, these up̄,L are the extreme solutions to Li+Sx and they
are characterized by an Irrelevance Principle, in this case WIP.

Similarly using Theorem 8 we can show the following Relevance Principle:

Theorem 10 Let w be a probability function on L satisfying Li+Sx, let Θ(a1, a2, . . . , an) be a
state description and suppose that amongst a1, a2, . . . , an there are at least as many ai which
are indistinguishable from a1 as there are ai which are indistinguishable from a2. Then given
Θ, the probability that an+1 is indistinguishable from a1 is greater or equal to the probability
that it is indistinguishable from a2.

As a particular application of this result recall the earlier question:

Suppose you are told that

R(a1, a2) ∧R(a2, a1) ∧ ¬R(a1, a3).

Which of R(a3, a1),¬R(a3, a1) should you think the more probable?

– it follows from Theorem 10 that if your w satisfies Li+Sx then ¬R(a3, a1) is at least as
probable as R(a3, a1). I.e. analogy wins out.

The proofs of these last three theorems may be found in [23], [28], [27] respectively.15

Finally we mention (informally) a consequence of Theorem 8 which seems far less expected.

Corollary 11 Let w satisfy Li+Sx.16 Then the probability, according to w, that a1, a2 are
indistinguishable but distinguishable from all other constants ai is zero.

[This result parallels J.Kingman’s result on Genetic Diversity that one never meets exactly
two examples of a species: One either meets exactly one or one meets infinitely many. See
[20].]

Well, this has all become rather mathematical, let’s step back an see where we’re up to.

Trying to Make Sense of it all

With apologies to many of you in the audience these tutorials have contained a fair bit of math-
ematics, and in fact the formal mathematics behind some of these last results is considerably
worse. The payoff is that some, I hope most, of these results have some philosophical import.
For example the result that if one accepts as rational Constant Exchangeability Ex then one
is, by dint of mathematical proof, forced to accept the Principle of Instantial Relevance.

Nevertheless such results seem to me to raise a fundamental problem because it is not as if
one can, once it is pointed out, simply see this implication unless one has the mathematical
background to understand and be convinced by the proof. For example could our original,
possibly innumerate, agent be blamed for accepting Ex but not PIR?

To counter this charge one might suggest here that there could be an alternate, much simpler,
proof just waiting to be discovered. Well, maybe, but I very much doubt it, and furthermore
this is but one of a number of similar results, surely they can’t all be trivialized.

15A broader coverage of recent results on Sx may be found in [24] or the (hopefully forthcoming) [29].
16Actually Li can be dropped in this case, just Sx suffices.
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One might also suggest that whether or not one saw the connection between Ex and PIR
both principles are rational in their own right, so both should be accepted even if in fact
just accepting the former would actually suffice. Indeed Carnap already favored PIR before
Gaifman revealed this link to Ex. That suggestion might hold weight here in this case but
there are results where the hypothesis is arguably rational whilst the consequence, obtained
via some complicated mathematics, is far less so, for example Corollary 11.

In conclusion then it seems that whilst the mathematics of PIL may uncover interesting new
principles and connections between principles, it is questionable whether, in general, it cur-
rently provides any additional philosophical insight or understanding, even to those who fully
comprehend the mathematics involved.

A second question that the work in PIL has raised concerns the relationship between the three
main (to date) sources of rational principles, Symmetry, Relevance and Irrelevant. Over these
two lectures I have discussed two, broadly speaking, symmetry principles, Ex and Li+Sx. In
each case I have described a de Finetti style representation theorem and from that we obtained
a relevance principle, PIR in the case of Ex and Theorem 10 in the case of Li+Sx. In addition
the ‘building blocks’ of these representation theorems, the w~x and the up̄,L respectively, were
characterized by satisfying an irrelevance principle, IP and WIP respectively. Whether or
not these irrelevance principles are at all desirable as expressions of rationality (I think this is
debatable) the fact is that symmetry seems to be the basic principle which begets and relevance
and irrelevance principles. This can in a way be explained for relevance, symmetry says that
the future is like the past and relevance says that what happened in the past should be a guide
to the future. But for irrelevance?

We finally mention an issue which was certainly close to Carnap’s heart – completeness. Even
if our agent accepts that to be rational his/her chosen probability function w should satisfy
Li+Sx (which is about as strong a principle as we have on the table right now) this still leaves
him/her with a very wide range of probability functions to choose from. In a way this might
be viewed as unfortunate because it suggests that two agents, both entirely rational according
to this criterion, could still assign different belifs/probabilities. Wouldn’t it be nice if we
could find additional, acceptable, rational principles which cut out this choice, forced these
two agents to agree. In other words that we had ‘completeness’.

Carnap spent some effort to achieve this in the case of Unary Inductive Logic (with his search
for the ‘right’ value for the parameter λ in his Continuum of Inductive Methods). To date this
search has proved fruitless and the situation in Polyadic Inductive Logic certainly looks no more
hopeful. Having said that there are ostensibly rational principles which do ensure completeness.
Namely we can argue that as far as our agent is concerned s/he has no reason to think that
R(ai1 , ai2 , . . . , ain), where R is an n-ary relation symbol of L, is any more probable that it’s
negation, and furthermore has no reason for supposing that there is any dependence between
different sentences of this simple form (i.e. that they are all stochastically independent).
These assumptions alone cut down the choice of probability function to just one, up̄,L where
p̄ = 1, 0, 0, 0, . . . in fact.

Unfortunately this probability function is completely bereft of any inductive inclinations For
example for a unary R it gives

up̄,L(R(an+1) | R(a1) ∧R(a2) ∧ . . . ∧R(an)) = 1/2

no matter how large n is. In other words it takes no notice at all of the previous supportive
evidence R(a1) ∧ R(a2) ∧ . . . ∧ R(an) in assigning a probability to R(an+1). This is no good,
what we want here is a choice of probability function which gives greater than in place of
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equality when n > 0. But how much greater than? The apparent arbitrariness of that answer
suggests to me that acceptable completeness is an unattainable dream – but as ever I could
be wrong!
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