Real Algebraic and Analytic Geometry

Preprint Server

Previous   Next
228. Frédéric Bihan, Frank Sottile:
Gale Duality for Complete Intersections.

e-mail: ,

Submission: 2007, October 5.

We show that every complete intersection of Laurent polynomials in an algebraic torus is isomorphic to a complete intersection of master functions in the complement of a hyperplane arrangement, and vice versa. We call this association Gale duality because the exponents of the monomials in the polynomials annihilate the weights of the master functions and linear forms defining the two systems also annihilate each other. We use Gale duality to give a Kouchnirenko theorem for the number of solutions to a system of master functions and to compute some topological invariants of generic master function complete intersections.

Mathematics Subject Classification (2000): 14M25, 14P25, 52C35.

Keywords and Phrases: sparse polynomial system, hyperplane arrangement, master function, fewnomial.

Full text, 11p.: pdf 231k.

Server Home Page