Real Algebraic and Analytic Geometry

Preprint Server

Previous   Next
34. Didier D'Acunto:
Sur la topologie des fibres d'une fonction définissable dans une structure o-minimale.


Submission: 2003, March 5.

Let $f: \mathbb{R}^n \rightarrow \mathbb{R}$ be a function of class $C^2$ definable in an o-minimal structure. We prove that the flow of the gradient field $\nabla f$ embeds each connected component of a non singular asymptotic critical level of $f$ into some connected component of a typical level of $f$. We apply this result to non singular complex polynomials.

Full text, 6p.: dvi 30k, ps.gz 28k, pdf 88k.

Server Home Page